
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ANALYZING INPUT/OUTPUT SUBSYSTEM SECURITY
IN WINDOWS CE

by

Barbara A. Pereira

June 2001

Thesis Advisor:
Second Reader:

Cynthia E. Irvine
Paul C. Clark

Approved for public release; distribution is unlimited.

20020102 062

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2001
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
analyzing Input/Output Subsystem Security in Windows CE
6. AUTHOR(S) Barbara A. Pereira
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

5. FUNDING NUMBERS

i. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRD3UTION / AVAILABELJTY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In the past few years, mobile handheld devices have emerged as an exciting new tool for
accomplishing everyday tasks. Devices with the Windows CE operating system provide
flexibility for the designer in the form of customizable modules and components. With
wireless capabilities and a familiar user interface, Windows CE devices are becoming popular
for such tasks as inventory control and information retrieval. By enhancing the self-protection
of the operating system, handheld devices could be used in more demanding environments.
This thesis reviews the security redesign of operating systems and explores the applicability of
such redesign to the Windows CE operating system. The existing security mechanisms in
Windows CE are described, and the operating system itself is critically examined for security
weaknesses, especially in the Input/Output subsystem area. Recommendations are made for
improving the self-protection of Windows CE. Future work is suggested in two areas:
analyzing other Windows CE subsystems in terms of security, and developing a method of
authenticating a Windows CE device to a server.

14. SUBJECT TERMS
Operating Systems, Handheld devices, PDA Security, Windows CE

15. NUMBER OF
PAGES „.,,_ 116
16. PRICE CODE

17. SECURITY
CLASSDJTCATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSDJTCATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

n

Approved for public release; distribution is unlimited.

ANALYZING INPUT/OUTPUT SUBSYSTEM SECURITY IN WINDOWS CE

Barbara A. Pereira
B.S. Electrical Engineering, University of Missouri - Columbia, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2001

Author: ~~ßuJho^L fMJUsMt
Barbara A. Pereira

Approved by: ^T^L*^ c • rr-j*^is-y*<*~

ynthia Irvine, Thesis Advisor

J- '1 oO.Cü
Paul Clark, Second Reader

'OAR

Dan Boger, Chair
Department of Computer Science

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

In the past few years, mobile handheld devices have emerged as an exciting new

tool for accomplishing everyday tasks. Devices with the Windows CE operating system

provide flexibility for the designer in the form of customizable modules and components.

With wireless capabilities and a familiar user interface, Windows CE devices are

becoming popular for such tasks as inventory control and information retrieval. By

enhancing the self-protection of the operating system, handheld devices could be used in

more demanding environments. This thesis reviews the security redesign of operating

systems and explores the applicability of such redesign to the Windows CE operating

system. The existing security mechanisms in Windows CE are described, and the

operating system itself is critically examined for security weaknesses, especially in the

Input/Output subsystem area. Recommendations are made for improving the self-

protection of Windows CE. Future work is suggested in two areas: analyzing other

Windows CE subsystems in terms of security, and developing a method of authenticating

a Windows CE device to a server.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. WHY CHOOSE WINDOWS CE ? 1
B. OBJECTIVES 2
C. THESIS ORGANIZATION 3

II. OVERVIEW OF SECURE OPERATING SYSTEMS 5
A. INFORMATION PROTECTION 5
B. THE CONCEPT OF A TRUSTED COMPUTING BASE 8
C. HISTORIC EXAMPLES 10

1. Multics Kernel Redesign 10
2. VM/370 Redesign 14

D. SECURITY IN MODERN OPERATING SYSTEMS 16
1. Windows NT Security 16
2. Windows CE Security —17
3. Palm OS Security 19

III. SECURITY IN WINDOWS CE DEVICES 21
A. WINDOWS CE SOFTWARE TRUST APPROACH 21
B. UNIQUE DEVICE IDENTIFICATION 25
C. APPLICATION LEVEL SECURITY SERVICES 26

IV. WINDOWS CE PENETRATION TESTING 33
A. INTRODUCTION 33
B. THE FLAW HYPOTHESIS METHOD 34

1. Definition of Purpose and Goals 35
2. Background Study 36
3. Brainstorming and Flaw Hypothesis Generation 36
4. Flaw Hypothesis Verification 37
5. Generalization of System Weaknesses........... 38
6. Documentation of Results—....—... 39

C. LAB AND TEST CONFIGURATION 39
1. Penetration Team Roles. 40
2. Lab Setup 40

a. CEPC Boot Disk 43
b. Serial Debug Connection 46
c. Ethernet Downloading 48
d. File Transfer Using ActiveSync 52

D. PROPOSED FLAW HYPOTHESES 53
1. File System / Object Store 54
2. Process and Thread Management—..... .— 55
3. Communication and I/O 56
4. Memory Management—. ...— 56
5. Graphics, Window, and Event Manager Subsystem......... .— 57
6. Miscellaneous Flaw Hypotheses.......—..—. 59

vii

E. PENETRATION TEST CONCLUSIONS 59

V. REDESIGN FOR SECURITY 61
A. EXISTING DESIGN 61

1. Windows CE Design Goals 61
2. Building Windows CE 62

B. WINDOWS CE KERNEL MODULES .Z'Z 65
1. Module Listing 65

C. WINDOWS CE OBJECT STORE MODULES !..""...". 66
1. Design Background : 66

D. WINDOWS CE I/O AND COMMUNICATIONS MODULES 68
1. Windows CE Driver Model 68
2. Native Drivers 69
3. Stream Drivers 70
4. NDIS Network Drivers 72
5. USB Drivers "". 73
6. Module Listing 73

E. WINDOWS CE I/O SERVICES ™ 75
1. ActiveSync Service 76
2. Remnet Service 76
3. RepIIog Service 76
4. Serial and IR Communications 77

F. RECOMMENDATIONS .77

APPENDIX A - PLATFORM BUILDER AND WINCE TOOLS 81
A. MICROSOFT WINDOWS CE PLATFORM BUILDER 3.0 81

1. Installation 86
2. Hardware Requirements 86
3. Building a Platform 87

B. CEPC 87
C. MICROSOFT EMBEDDED VISUAL TOOLS 3.0 "Z'Z 88
D. SUMMARY 88

APPENDIX B - IMAGIX 4D AND SOFTWARE ANALYSIS TOOLS 89
A. C AND C++ SOFTWARE ANALYSIS TOOLS COMPARISON 89
B. DESCRIPTION OF SOFTWARE TOOLS 90

1. CIAO / CIA 90
2. PBS 90
3. Imagix 4D 90
4. +lReverseC 90
5. DMS Software Engineering Toolkit 91
6. jGrasp 91

LIST OF REFERENCES 93
A. BOOKS AND ARTICLES [....." 93
B. OTHER 95

INITIAL DISTRD3UTION LIST 97

Vlll

LIST OF FIGURES

Figure 3.1 Security Support Provider Relationships [ALFOO] 28
Figure 3.2 Microsoft Cryptographic System Elements [ALFOO] 30
Figure 4.1 CEPC Boot Menu 45
Figure 4.2 The Configure Remote Services Dialog Box [MICOOb] 48
Figure 4.3 The Configure Remote Services Dialog Box, Ethernet tab [MICOOb] 49
Figure 4.4 Loadcepc Command Options 50

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 3.1 Trust Level Combinations 23
Table 4.1 Files on the CEPC Boot Disk [MICOOb] 44
Table 4.2 CEPC Serial Cable Pin Connections 47
Table 5.1 Kernel Modules Table [GAR99] 65
Table 5.2 Stream Driver Functions [GAR99] 72
Table 5.3 Driver Modules Table [GAR99] 75
Table A.l WINCE OS Configurations [MICOOa] 82
Table A.2 Maxall Components [Platform Builder Online Help] 85
Table B.l Software Analysis Tools Comparison 89

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

ACKNOWLEDGMENTS

I would like to acknowledge the expert guidance of Cynthia Irvine, throughout the

entire thesis process. I will never forget the importance of CAMs, AMs, or green eggs

and HAM, and the other enlightening things that were learned in her class lectures. Paul

Clark also deserves my thanks, for his patience and willingness to listen. Other members

of the NPS faculty also have my appreciation for their excellent instruction, and I believe

they know who they are. Finally, I would like to dedicate this work to my husband,

Mike, for everything, and to my parents, who knew I could do it.

xiu

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

I. INTRODUCTION

A. WHY CHOOSE WINDOWS CE ?

Windows CE is an embedded operating system sold by Microsoft and customized

by manufacturers to fit the needs of their consumers. It is a versatile operating system,

and it has been used in many devices from industrial controllers to personal digital

assistants. Windows CE is even used in cell phones and television set-top boxes. With

all the flexibility it has to offer, not to mention its compatibility with Windows-based

desktop computers, Windows CE is a good choice for many tasks commonly performed

in government and military organizations.

On the other hand, with Palm OS devices accounting for approximately sixty

percent of the sales of personal assistant type devices, one might wonder why Windows

CE was chosen as the focus of this study. Pocket PCs, running a version of the

Windows CE operating system, offer color display screens, have faster StrongARM

processors, and present a familiar Microsoft Windows style interface. They are powered

by rechargeable lithium ion batteries, rather than the AAA batteries found in most Palm

OS devices. The Windows CE strategy is to offer a multifaceted array of services, rather

than simply provide basic functionality such as a calendar or task manager.

With Windows CE, a user can work with Microsoft Word and Excel documents,

listen to MP3s, and read digital books. However, the Windows CE operating system was

not designed with security in mind. Due to the unique constraints and challenges

presented by the hardware of most embedded devices, the foremost design objectives

1

were a small memory footprint and enhanced system performance. As with many things

in life, compromises must be made between security and performance. The designers of

Windows CE heavily favored performance over security, but it is not too late to take a

look back at the system and determine how its self-protection might be improved.

B. OBJECTIVES

This thesis will explore the organization of Microsoft Windows CE 3.0. The

operating system components are examined in detail, while keeping security issues in

mind. Penetration testing conducted upon Windows CE will be discussed. Obvious

security weaknesses in the operating system will be addressed, and suggestions for

improvements will be made.

With the advantages of a security enhanced operating system, hand-held devices

could be used in more demanding environments, such as onboard a Naval vessel. The

aim of this thesis is to take a first look at methods for improving the self-protection of

Windows CE. A more robust operating system could be utilized confidently in many

governmental tasks requiring the use of hand-held devices.

Some type of control needs to exist on the process of upgrading the operating

system or applications on a Windows CE device. Without controls, malicious software

might be introduced or the system itself might be corrupted. Rather than allowing

anyone to modify system critical software, some restrictions should exist. Trusted

subjects would be allowed to upgrade the system or add new applications dynamically,

providing new features without compromising the device's usability. The Windows CE

operating system is used for embedded systems, possibly safety critical, in which its self-

protection may be important.

C. THESIS ORGANIZATION

This thesis consists of five chapters, and two appendices. Chapter I introduces the

topic, and provides some motivation for the study. Chapter II discusses important

concepts related to the redesign of operating systems for security, and explores the

implementation of security in a few modern operating systems. Chapter III describes the

security mechanisms that are currently present in Windows CE. Chapter IV explains the

Raw Hypothesis Method. It also describes the penetration testing performed upon

Windows CE, and the lab configuration required to support the tests. Chapter V

examines the organization of the Windows CE operating system, while focusing on the

I/O and communication modules. Recommendations are made for improving the self-

protection of the system, and suggestions for future work are proposed. Appendix A

describes Platform Builder and other Windows CE development software, as well as the

CEPC reference platform. Appendix B outlines a selection of software analysis tools that

could be used in analyzing the Windows CE source code.

THIS PAGE INTENTIONALLY LEFT BLANK

H. OVERVIEW OF SECURE OPERATING SYSTEMS

A. INFORMATION PROTECTION

Computers are a part of our everyday life, and they are used in many ways that

require some level of information protection. Airline reservation systems, e-commerce

customer records, credit bureau databases, law enforcement information systems, and

hospital records are all examples of information stored on computers that should be

protected. Computer mechanisms can be used to enforce an appropriate security policy

that safeguards the sensitive information. The term security is used to denote the

mechanisms and techniques that control who may use or modify a computer or the

information stored on it.

In order to avoid known design problems, it is necessary to review the historical

approaches to enhancing the security of an existing operating system. We know that a

secure system should implement the Reference Monitor Concept [AND72], so that the

system is self-protecting, always invoked, and capable of being analyzed. In this context,

security refers to the mechanisms and techniques that control who may use or modify the

computer or its information.

A potential security violation is the unauthorized release of information. This

includes traffic analysis, in which an intruder observes the patterns of information use

and infers some content from those patterns. It also includes the release of sensitive data

or programs.

The unauthorized modification of information is another potential security

violation. An intruder might be able to change some vital stored information, possibly

without even seeing it.

Denial of computer and network services to authorized users is also a potential

problem. The system could be flooded with specific requests, so that it is unable to

respond, or the system could be made unresponsive in general. A simple power outage

could also cause a denial of service.

In the above cases, unauthorized means that the action is happening without the

permission of the person controlling the information, and possibly outside the constraints

imposed by the system itself. Some techniques commonly used to prevent security

violations are labeling files with lists of authorized users, verifying a user's identity by a

password, shielding the computer to prevent the interception and interpretation of

electromagnetic radiation, locking the room containing the computer, controlling who is

allowed to modify the computer system's hardware and software, and certifying that the

hardware and software are actually implemented as intended.

There are eight well-known design principles that apply to security protection

mechanisms [SAL75]. These principles are economy of mechanism, fail-safe defaults,

complete mediation, open design, separation of privilege, least privilege, least common

mechanism, and psychological acceptability.

Applying economy of mechanism means that the system design will be kept as

small and simple as possible. A small system is easier to verify that it works according to

the specifications. A simple, straightforward system lends itself to a thorough

examination of its correctness.

Fail-safe defaults in a system ensure that the default action is to refuse permission

and deny access. Thus, even if the system defaults are used, the system is still safe from

unauthorized access. A default to allow access might go unnoticed until it was used by

an intruder to penetrate the system. But, a default set to deny access would be noticed as

soon as an authorized user tried to legitimately access the information. Specific

permissions could be provided to authorized users to allow their tasks to be performed.

To have a secure system, every access to every object must be checked for

authority. In other words, we need complete mediation between subjects such as

processes, and objects like files or resources. If an object could be accessed without any

checks, the system security would be bypassed as if it didn't even exist. Access control

must be present system-wide, not just in a particular system component.

A system should not rely on the secrecy of its design for its security. An open

design allows many people to examine the system for flaws or inconsistencies. As a

result, the system can be made stronger. This is much better than just ignoring system

weaknesses in the hope that no one will ever find them out. The security mechanisms

should not rely on the ignorance of potential attackers to offer protection.

The design principle of separation of privilege guards against a single point of

unauthorized access. In order to access an object, more than one condition must be met

before access is allowed. For example, it would be like having two keys owned by two

separate people to open one protected safe with the treasure inside. The two people must

cooperate to open the safe, and if one person loses his key, the safe's contents are not

compromised.

In order to limit the damage caused by an accident or error, every program and

every user of the system should operate using the least set of privileges needed to

complete the job. This is known as the design principle of least privilege.

Least common mechanism limits the mechanisms that are common to more than

one user and depended upon by all users. Each shared mechanism represents a channel

between users and must be designed very carefully to avoid compromising security, often

unintentionally.

The final design principle is psychological acceptability. No matter how great the

system is, people will not use it if it is strange, confusing, or even ugly. The ways

available to interact with the system should match the user's ideas of how it should work.

The system should be intuitive, and forgiving of unexpected user input. The system

needs to match its representation of security features to what the user believes is needed.

This mapping will minimize user errors and frustration.

The framework for a secure system can be built by using these design principles.

This thesis investigates how these principles apply to a redesign of the CE operating

system, and the CE file system, serial I/O, and synchronization mechanisms in particular.

B. THE CONCEPT OF A TRUSTED COMPUTING BASE

The Anderson Report [AND72] introduced the idea of a reference monitor. The

reference monitor is responsible for system security by enforcing authorized access

relationships between subjects and objects within the system. Subjects are active entities

such as processes or threads. Objects are passive entities like files or database records.

An implementation of the reference monitor concept is called a reference validation

mechanism. The reference validation mechanism must be tamper proof, always invoked,

and small enough in size to be analyzed and tested to ensure its completeness.

A security kernel exists in computer systems that are designed and implemented

strictly according to the reference validation mechanism requirements. Systems with the

Microsoft Windows CE operating system do not have a security kernel. Most systems,

including those running Windows CE, implement a reference validation mechanism as

part of a general-purpose mechanism whose size and complexity make it very hard to

analyze and test for assurance. Therefore, most security mechanisms present are just

stuffed into various locations in the operating system, rather than being organized and

modular. The TCSEC also describes the notion of a Trusted Computing Base, or TCB, to

apply to the majority of computer systems, which do not have security kernels.

A TCB is defined as the part of a system which contains all the elements of the

system that are responsible for supporting and enforcing security policy. According to

this definition, non-security related mechanisms can reside within the TCB. However, all

security critical mechanisms must be contained inside the TCB. When the TCB contains

non-security mechanisms, it is generally accepted that such a system does not meet the

common standards for high assurance.

To achieve controlled access protection of a system, the TCB enforces isolation of

security related objects. The TCB must ensure that reusable objects do not contain

residual data when they are allocated. The TCB also maintains audit information on the

use of identification and authentication mechanisms, object access, object deletion, and

the activities of users, system administrators, and security administrators. The TCB must

isolate protected resources to ensure that access controls and audit requirements are

enforced.

C. HISTORIC EXAMPLES

In any engineering task, it is always good to take a look back at previous related

designs so that mistakes are not repeated. Good design approaches can be reused to

jump-start project development, and major pitfalls can be avoided by noticing those that

have trapped people in the past. Two major security redesign projects of the 1970's were

the Multics kernel redesign, and the KVM/370 redesign.

1. Multics Kernel Redesign

In the paper "The Multics Kernel Design Project" [SCH77], Michael Schroeder,

David Clark, and Jerome Saltzer discussed the work that was done to make the Multics

kernel more secure. Multics stands for Multiplexed Information and Computing Service.

It was a mainframe timesharing operating system that was developed in 1965.

Originally, Multics was a joint research project by MIT's Project MAC, Bell Telephone

Laboratories, and General Electric Company's Large Computer Products Division. The

system evolved into a commercial operating system that was sold by Honeywell. Multics

was used in many sectors of the population, from education to government and industry.

The main objectives of the design project were to demonstrate security for a large,

working operating system, and to show that Multics could enforce a security policy. A

few troubling problems were encountered along the way. Today, decades later, we still

have the problem of just how to evaluate and understand large amounts of source code

that were written by many people over time. Another problem was how to express all of

the security mechanisms in a simple, verifiable model. Then, as now, ad hoc security

10

mechanisms existed outside the operating system, and were hard to incorporate into the

implementation of a security kernel.

People agreed that some type of integrity audit was essential before the Multics

operating system could be used to protect sensitive information, such as military data

existing at different security classification levels. To make Multics more secure, the

kernel had to be simplified so that an evaluator could understand it. By simplifying the

kernel, the risk of overlooking a threat to system security was reduced. A second subgoal

of the project was to provide a set of security functions that could be described by a

simple formal model. By describing the security functions in a formal model, their

correctness could be verified more rigorously than an informal review would permit.

This formal model provided more assurance that the security functions were behaving in

accordance to the defined security policy. For more details on the model used, see the

paper "The Multics Kernel Design Project" [SCH77].

The Multics kernel design project explored some major issues, such as the

possibility of being evaluatable, the actual usefulness of the formal model, and the impact

of the security redesign on overall system performance. Some questioned whether it was

even possible to evaluate a system of such a large size. There was a concern that the cost

of using a formal model might outweigh the model's usefulness to the project as a whole.

Finally, system performance was also a design compromise between security

mechanisms and responsiveness. There would not be a large consumer market for a

system that was very secure and yet very slow.

Instead of developing their own formal model, the Multics team used the MITRE

model of sensitivity levels and compartments [BEL73]. This model constrained the flow

11

of information by preventing information to be written down from a higher security level

to a lower level. The model also prohibited reading information at a higher security level

than the current security level. AIM, the Access Isolation Mechanism, was a set of

security features that was added to Multics. AIM implemented the labeling of all

information, and enforced security checks at all points where information could cross

level or compartment boundaries.

At that point in the Multics design project, several goals were pursued. Work was

done to add AIM to Multics, and to develop prototypes to implement security functions

in better, more efficient ways. More detailed formal system specifications were

developed, and then verified. The central supervisor was reimplemented to allow more

verification.

The new, easier-to-review version of Multics with AIM was named

Kernel/Multics. One of the difficult parts of the project was to certify that

Kernel/Multics complied with the documented specifications. In order to do that,

program verification tools were used, the source code was audited, user testing and error

reporting were conducted, and penetration testing of the system was performed. All of

these methods were employed to verify the integrity of Kernel/Multics.

Three major redesign proposals were made. The first was to remove protected

supervisor functions from the kernel if the functions did not absolutely need to be there.

The idea was to put only the minimal necessary functions in the protected kernel.

However, moving some of the functions out of the kernel had an adverse effect on overall

system performance. The second proposal was to implement the protected functions by

using the natural separation given by independent processes operating in distinct address

12

spaces. The third proposal was to use systematic program structuring techniques for the

kernel. Ideas from all three of these proposals were used.

Type extension is a method that makes all modules into object managers,

categorizes the ways one module can depend on another, and organizes modules into a

loop-free dependency structure. This method was used to implement structured

programming in the kernel. Each module was an object manager, so the interface to each

module defined all the operations on the object type managed by that module. Some

examples of object types used in the Multics kernel design are disk records, core blocks,

core segments, and page frames. Dependencies between modules can be explicit, caused

by procedure calls or interprocess messages that wait for replies. Implicit dependencies

are those caused by direct sharing of writable data among modules. In the Multics

redesign, it was necessary to remove the dependency loops so that the correctness of each

module could be established independently.

In order to identify all the dependency loops between modules, the dependencies

were placed into one of five categories. These categories were component dependencies,

map dependencies, program storage dependencies, address space dependencies, and

interpreter dependencies. Component dependencies exist when a module's objects are

composed of another module's objects. Map dependencies occur when a module

depends on the managers that provide the objects in which the map of object names to

component names is stored. Program storage dependencies are related to where a

module's algorithms and data are temporarily stored. An address space dependency

means that a module executes in an object's address space, which depends on the

module's managers. For interpreter dependencies, a module depends on the module that

13

implements its interpreter, or the virtual processor on which it executes. By identifying

module dependencies, the Multics redesign effort allowed their elimination to produce a

loop-free collection of object managers.

So, it was possible to implement the complete Multics kernel functionality

through a loop-free structure of object managers by using the rationale of type extension

and the five kinds of dependencies. By doing this, it became feasible for a single

evaluator to examine the kernel and be assured of its correctness. Kernel/Multics was

developed to incorporate the necessary security mechanisms and make the kernel easier

to review. The MURE formal security model of sensitivity labels and compartments was

applied to describe Multics system security functions in a clear and consistent way. The

Multics kernel redesign proved that an existing operating system could be re-engineered

to enhance its security.

2. VM/370 Redesign

The paper "A Security Retrofit of VM/370" explains the design work that was

done to add a feasible, formally verified security kernel to the existing VM/370 operating

system [GOL79]. A goal for the security kernel was to allow verification with respect to

the security policy. It had a tolerable effect on overall performance, and required

minimal replacement of existing code. The security kernel was also designed to be

backwards compatible with existing applications.

The general redesign strategy was to partition the VM/370 control program into

security-relevant and non-security-relevant modules. Modules that were security relevant

were those that executed privileged instructions or accessed global system data. The plan

14

was to use encapsulation of multiple, individual copies of an operating system under a

virtual machine monitor (VMM) system to provide a secure OS.

The new, security enhanced OS was called KVM/370. Its system architecture had

four main components. The kernel and verified trusted processes operated in the

supervisor ring, separated from the rest of the system. Audited semi-trusted processes

were used to access virtual addresses. A Non-kernel Control Program (NKCP) existed

for each security level, to act as an interface to the user Virtual Machines (VMs). The

last component was user Virtual Machines that were each controlled by the appropriate

NKCP for the appropriate security level.

Some design tradeoffs were considered for the resource scheduling and

management. They could either be done in a system global manner, or on a NKCP local

basis. If implemented globally, the size of the kernel and trusted processes would

increase. There would be a complicated interface between the NKCPs and the global

processes. Verification would be more difficult and expensive, and it would be harder to

modify the system. However, performance would improve with this approach. By using

a NKCP local basis for resource scheduling, most resource management would be done

by the NKCPs. That would simplify the system design, implementation, verification, and

interfaces. The problem with NKCP local approach is that system performance would be

adversely affected. So, it was decided to use a mixture of the two approaches in order to

preserve adaptability and ease of verification.

As part of the system redesign, the kernel and trusted processes were the only

parts of the KVM/370 whose formal specifications were formally verified. The formal

proof of correctness required that the kernel and trusted processes enforced the security

15

policy. The proof also required a demonstration to show that there were no unauthorized

signaling capabilities, or covert channels, within the semi-trusted processes.

In general, the KVM/370 redesign was based on the principles of least privilege

and least common mechanism. These two principles can also be applied to a redesign of

the Windows CE operating system. When possible, security related modules should be

separated out from the rest of the system. Overall system performance should be

considered, and formal verification should be used if needed.

D. SECURITY IN MODERN OPERATING SYSTEMS

Modern desktop operating systems such as Windows NT or Linux do not

incorporate a security kernel. However, they do offer various security services and forms

of access control. Personal Digital Assistant (or PDA) operating systems such as

Windows CE or Palm OS have rudimentary security features and limited self-protection

of the operating system itself. As PDA devices are becoming more connected to

networks and through the use of wireless technology, the security of such devices

becomes a more important issue. It is interesting to take a look at how the different

operating systems compare to the design principles outlined in the paper by Saltzer and

Schroeder.

1. Windows NT Security

There is a thorough explanation of Windows NT security features in the book

Inside Windows NT, by David Solomon [SOL98]. Economy of mechanism is proposed

in the design of Windows NT, but it is debatable whether it can be applied to an operating

system of such a large size. As for fail-safe defaults, NT first checks if the desired access

to an object is allowed. The default is to deny access, which is safe in any case.

16

Mediation is accomplished through the use of Access Control Lists (ACL). The system

design is partially open due to the books written about how NT behaves, even though the

source code is not available. Separation of privilege is accomplished through the use of

different user roles, such as administrator, power user, user, and guest. The principle of

least privilege is met by providing various access modes such as read, write, execute, and

append. Least common mechanism is observed through the use of various modules for

different tasks. The security reference monitor (SRM), kernel, local security authority

(LSA), and security accounts manager (SAM) each provide needed features in a modular

way. Mechanisms that must be shared are logged. As for using an isolated virtual

machine, a real CPU abstraction called the hardware abstraction layer (HAL) with virtual

resources is provided. The authentication mechanism is met by the Windows logon,

which is flexible enough to incorporate a password, smartcards, or biometrics. For

shared information, NT uses an Access Control List when opening objects, and a ticket

called a handle when accessing objects. Linear 32-bit addressing is used in Windows

NT. NT is not a capability system and has no tag bits. NT security is based on ACLs

and permissions. As for protection groups, NT uses system groups and user groups. The

authority to change ACLs is given to the owner and the administrator, as well as anyone

else that the owner or administrator has given permission to. NT only supports a

Discretionary Access Control (DAC) policy. There is an ACL strategy for all objects,

and permissions are object dependent. NT does have protected subsystems, such as the

local security authentication server (LSASS), but they are not available to users.

2. Windows CE Security

The organization and design objectives of Windows CE are discussed in the book

Inside Microsoft Windows CE, by John Murray [MUR98]. Details of Windows CE
17

security features can be found in the Microsoft technical article "Creating a Secure

Windows CE Device" [ALFOO]. Windows CE addresses economy of mechanism by

keeping the OS size small, and by introducing modules and components. Since memory

space in embedded devices is at a premium, effort was taken to make the OS as small and

streamlined as possible. Unnecessary modules or components for a specific device can

be removed, simplifying the design. Windows CE does not support fail-safe defaults.

There is very little security implemented in its default configuration. There are no access

permissions associated with objects, no user identification or authentication, and the

default is to run all processes and threads in kernel mode to enhance system performance.

There is a mechanism to certify code modules, but it is turned off by default. A unique

device identifier may be assigned, but one is not given in the default configuration.

There is no mediation at all, since subjects and objects are not assigned access modes.

There is a password for the device, but the user must first enable that feature. The system

design is open to certain manufacturers who have agreements with Microsoft. Otherwise,

the design is partially open, because its high level structure is documented on Microsoft's

web sites and in some books. Separation of privilege, least privilege, and least common

mechanism do not apply, because a complete set of protection mechanisms does not

exist in Windows CE. There is a real CPU abstraction called the OAL, or OEM

Adaptation Layer, between the actual hardware and the operating' system itself. The

OAL serves ä similar function to the HAL in Windows NT. As stated before, there is no

intrinsic authentication mechanism. However, support does exist for smartcard readers to

be added in later. As for shared information, all processes share a common memory

space, by default providing no distinction between kernel level and user level memory.

18

Windows CE does not use protection groups. The only protected subsystem is a portion

of the operating system kernel.

3. Palm OS Security

The Palm OS is described in the book Palm Programming: The Developer's

Guide [RH098]. The Palm OS provides for economy of mechanism in much the same

way as Windows CE. The OS has a small footprint that is well suited for the PDA

devices it is typically installed upon. The OS is divided into subsystems called managers,

such as the Memory Manager or the Database Manager. Considering fail-safe defaults,

the Palm OS originally has its password and auto-lock features turned off. The user is

responsible for enabling those features and for marking certain application data as

"private". As with Windows CE, there is no mediation because access modes are not

defined. User identification and authentication are not implemented. The system design

is partially open, because books and online documentation are available that discuss the

high-level design and programming interface. Separation of privilege, least privilege,

and least common mechanism are not addressed, due to the lack of Palm OS security

mechanisms in general. A user authentication mechanism is not provided. No

protections groups exist, and only parts of the operating system are protected.

PDAs are used in a radically different environment from that of the typical

desktop PC. Rather than sitting for long periods at a desk, PDA users walk around, enter

short notes while in the middle of other tasks, and retrieve PDA information as needed on

location. The desktop security model might not fully encompass the different ways that

PDAs are used. When considering Windows CE security, one should be mindful of how

19

and where the PDA devices are used, and how its security approach might differ from

that of a desktop computer.

20

HI. SECURITY IN WINDOWS CE DEVICES

A. WINDOWS CE SOFTWARE TRUST APPROACH

According to the Microsoft article, "Creating a Secure Windows CE Device"

[ALFOO], Windows CE 3.0 provides an integrated set of security services with nine main

features. The features include providing a "trusted environment" model, the Security

Support Provider Interface (SSPI), support for Windows NT LAN Manager, support for

the Secure Sockets Layer (SSL), cryptography, a smart card infrastructure that supports

the Microsoft Cryptographic API (CAPI), a unique device identifier, a protected kernel

configuration, and digital authentication in the dial-up boot loader.

Two Windows CE API functions are provided for Original Equipment

Manufacturers, or OEMs, to implement in order to create a trusted environment. Using

these functions can prevent unknown modules from being loaded, restrict access to

system APIs, and prevent write access to selected parts of the system registry. As one

can see, this definition of a trusted environment is not quite the same as having a TCB.

The first provided function is OEMCertifyModulelnit. It is called once for

initialization of each RAM executable module to be checked. The function returns either

true or false, depending on the success of the initialization. What this function actually

does is determined by the needs of the OEM. For example, it could be setting up public

keys or using the Loadauth library routines included with Platform Builder.

The second function is OEMCertifyModule. This function allows the OS loader

to pass the module code, which could be a DLL or EXE type file, to the OEM for

verification that the module is safe to run on the system. The return values for

21

OEMCertifyModule are OEM_CERTIFY_TRUST, OEM_CERTIFY_RUN, and

OEM_CERTIFY_FALSE. OEM_CERTIFY_TRUST signifies that the module code is

trusted to perform any operation. OEM_CERTIFY_RUN means that the module is

trusted to run, but is restricted from making some selected privileged function calls.

OEM_CERTIFY_FALSE means that the module is not trusted and therefore not allowed

to run. To find out the trust level of a calling application, dynamic-link libraries can use

the CeGetCurrentTrust and CeGetCallerTrust functions in addition to the OEM functions.

It is the responsibility of the OEM to perform the desired checks on the code

module in the OEMCertifyModule function. These checks could be a cyclic redundancy

check to verify integrity or a public key certificate check. Basically, this function is only

as good as the means chosen to verify the code module, which will vary from one OEM

to another. Some OEMs may choose not to certify modules at all.

When a dynamic-link library (or DLL) is loaded into the address space of an

executable file (or EXE), the trust level of the EXE process determines the final access

level. For example, when an EXE with the OEM_CERTIFY_RUN trust level tries to

load a DLL that has a higher trust level of OEM_CERTIFY_TRUST, the final trust level

of the DLL is lowered to OEM_CERTIFY_RUN. If an EXE tries to load a DLL with a

lower trust level than its own, the DLL will fail to load. If the EXE trust level is

OEM_CERTIFY_FALSE, the EXE will not run. If the DLL trust level is

OEM_CERTIFY_FALSE, the DLL will fail to load. The different combinations of EXE

and DLL trust levels are listed in the following Table 3.1 [ALFOO].

22

EXE Trust DLL Trust Final DLL Trust

OEM_CERTIFY_RUN OEM_CERTIFY_RUN OEM_CERTIFY_RUN

OEM_CERTIFY_RUN OEM_CERTIFY_TRUST OEM_CERTIFY_RUN

OEM_CERTIFY_RUN OEM_CERTIFY_FALSE DLL fails to load

OEM_CERTIFY_TRUST OEM_CERTIFY_RUN DLL fails to load

OEM_CERTIFY_TRUST OEM_CERTBFY_TRUST OEM_CERTIFY_TRUST

OEM_CERTIFY_TRUST OEM_CERTIFY_FALSE DLL fails to load

OEM_CERTIFY_FALSE RUN, TRUST, or FALSE DLL fails to load, and EXE
will not ran

Table 3.1 Trust Level Combinations

It seems like it would be a good idea to use the two provided security functions to

restrict unknown modules from running. However, in order to support third party drivers,

the OEMs must digitally sign them, or have the check in OEMCertifyModule always

return OEM_CERTIFY_TRUST for all of the chosen drivers or the drivers will be

prevented from loading. This seems like a point that would deter the OEMs from

choosing to use the two security functions in the first place. The problem of certifying

modules that have not yet been written is one that demands careful thought. OEMs would

most likely want to support as many drivers as possible, and new drivers might not be

available at the time of the Windows CE device manufacture. This could potentially

cause difficulties in implementing and using a module certification scheme based upon

the functions OEMCertifyModule and OEMModulelnit.

23

Another point to remember is that the names of the functions

OEMCertifyModulelnit and OEMCertifyModule are arbitrary and any names can be used

as long as the kernel pointers pOEMLoadlnit and pOEMLoadModule in the OEMInit

function are initialized to the desired functions.

When a code module has a trust level of OEM_CERTIFY_RUN, it is restricted

from calling the following API functions:

SetlnterruptEvent
SetSystemMemoryDivision
CESetThreadPriority
ForcePageout
VirtualCopy
LockPages
UnlockPages
SetProcPermissions
SetKMode
ReadProcessMemory
WriteProcessMemory
SetCleanRebootFlag
PowerOffSystem
DebugActiveProcess

In the CreateProcess function, the debug flags DEBUG_ONLY_THIS_PROCESS

and DEBUG_PROCESS are restricted as well. The registry architecture in Windows CE

3.0 permits only code modules with a level of OEM_CERTIFY_TRUST (which

Microsoft calls trusted applications) to modify protected keys and values. The following

registry root keys and their subkeys are protected:

HKEY_LOCAL_MACHINE\Comm
HKEY_LOCAL_MACHINE\Drivers
HKEY_LOCAL_MACHINE\HARDWARE
HKEY_LOCAL_MACHINE\SYSTEM
HKEY_LOCAL_MACHINE\Init
HKEY_LOCAL_MACHINE\WDMDrivers

24

To protect the registry, Windows CE restricts some applications from invoking

certain registry function calls. Untrusted applications, which are those defined by

Microsoft as not having the trust level of OEM_CERTIFY_TRUST, receive the return

value of ERROR_ACCESS_DENIED if they try to use the registry functions

RegSetValueEx, RegCreateKeyEx, RegDeleteKey, and RegDeleteValue.

Everything else in the registry is unprotected. Microsoft recommends that the

OEMs place all their important registry information into one of the protected keys. Code

modules with a trust level of OEM_CERTIFY_RUN can read all registry keys and

values. In fact, all applications have read-only access to all of the keys and values in the

registry.

B. UNIQUE DEVICE IDENTIFICATION

Another security service that Windows CE can provide is unique device

identification. A DEVICE_ID data structure is provided for the OEM to store a unique

identification number for each device. The input/output control

IOCTL_HAL_GET_DEVICEID in the OEM adaptation layer (CE's version of the HAL,

Hardware Abstraction Layer, in Windows NT) returns the current DEVICEJD assigned

to the Windows CE device. Device identification could be used for billing or security

purposes. If using the device id for security, care should be taken that the usage fits into

the overall security policy and that the implementation is sound.

Two modes of operation exist for the Windows CE kernel, protected mode and

full-kernel mode. Protected kernel mode is available to reduce the vulnerability of the

memory storage, but using it will cause overall system performance to degrade. The

default mode of operation is full-kernel mode. Windows CE is vulnerable when using

25

full-kernel mode while running threads, since the security features are bypassed. In full-

kernel mode, applications can access any physical memory in the system. This means

that the system can be exploited by malicious applications that scavenge privileged

information or delete files. Running in full-kernel mode increases performance at the

cost of system security. Full-kernel mode can be disabled by setting the second bit of

ROMFLAGS in the Config.bib file before building the operating system image. By

disabling full-kernel mode, the kernel operates in protected mode, restricting the physical

memory access of user level threads.

Windows CE has a dial-up boot loader stored in ROM that can be used to upgrade

the OS image file, Nk.bin, using flash memory or a remote server. To help ensure the

integrity of the OS image, digital encryption can be used to sign and verify image files.

The dial-up boot loader uses the Microsoft Cryptography Application Programming

Interface (CAPI) to authenticate data using the asymmetric hashing algorithm

CALG_SHA, which produces a 160-bit hash value. The dial-up boot loader extracts the '

signatures from the manifest file and verifies the authenticity of each OS image file. In

the case of authentication failure, the download process is halted and the user is notified.

Platform Builder 3.0 provides three tools for digital authentication. Makekey.exe creates

a public/private key pair. The program mksigs.exe signs the OS image files. The

signatures can be appended to the manifest file by running the" addsigs.exe program.

C. APPLICATION LEVEL SECURITY SERVICES

Windows CE also offers application level security services [ALFOO]. These

services include the Security Support Provider Interface (SSPI), Security Support

Providers (SSPs), Windows NT LAN Manager Security Support Provider, Secure

26

Sockets Layer (SSL), Microsoft Cryptography API (Crypto API or CAPI),

Cryptographic Service Providers (CSPs), and Smart Card Service Providers (SCSPs).

SSPI resides in the Secure32.dll module. It is an API designed for obtaining

integrated security services for authentication, message integrity, and message privacy.

SSPI acts as an abstraction layer between application level protocols and security

protocols. The Windows CE SSPI provides access to the DLLs which contain the

available authentication and cryptographic libraries. These DLLs are known as Security

Support Providers (SSPs), or security packages. The SSPI allows the use of one or more

SSPs by any application that desires them. It is also possible for an OEM to write

customized security packages and add them to the registry.

According to the book Network Programming for Microsoft Windows [JON99],

Winsock is the preferred interface for accessing a variety of underlying network protocols

and is available in varying forms on every Win32 platform. Winsock is a network

programming interface and not a protocol. The Winsock interface inherits a great deal

from the Berkeley (BSD) Sockets implementation on UNIX platforms, which is capable

of accessing multiple networking protocols. Winlnet operates at the session layer.

Winlnet handles programming Windows Sockets (Winsock), TCP/IP, and Internet

protocols.

Figure 3.1 illustrates the relationship between the SSPs, the SSPI, Winsock, and

Winlnet.

27

Application

r—~ "—~^
Winlnet

HTTP/HTTPS!:
SSPI ;; ;

(Secur32dlD

i i

Winsock
-*"

Non-secure Secure

I
WhdowsWT 1

LMSSP !

Other
::;.:SSRK

TCP/IP

Figure 3.1 Security Support Provider Relationships [From: ALFOO]

Windows NT LAN Manager Security Support Provider (NTLMSSP) is available

for use with Windows CE. In client-server applications, NTLMSSP can be used by

Windows CE applications for user authentication to a NT server. The client application

supplies the user name, domain name, and password to the NTLMSSP and the server and

client applications exchange tokens to complete the authentication. This type of client-

server exchange could take place during an ActiveSync session.

Windows CE, unlike Windows NT, does not support impersonation. This means

that Windows CE does not allow an object to acquire the security credentials of an

authenticated user or client. Authentication under Windows CE is done at the TCP/IP

level only. An authentication check is made the first time a client calls the server. If the

client passes the check, no authentication takes place during subsequent calls to the

server. In addition, an application may completely disable Windows CE authentication to

a server.
28

Normally, a Windows NT domain controller manages the security credentials of

subjects logging on and authenticates a Windows CE client to a network. However, in

mobile situations, or when a Windows NT domain controller is not available, a local

Windows CE database of user names and passwords can be created for the Windows NT

LAN Manager security package to use for verifying credentials. It should be

remembered that Windows CE databases are unprotected and any Windows CE

application can access the data contained in them. This could possibly lead to

compromise of the Windows NT user names and passwords.

Windows CE supports Secure Sockets Layer (SSL) versions 2.0 and 3.0 for

providing some measure of secure network communications. SSL is available through

Winlnet or directly from WinSock. Applications can use secure sockets for transmitting

and receiving encoded data. Windows CE maintains a database of trusted Certification

Authorities independent of the Crypto API certificate store. Responsibility for verifying

that a certificate is acceptable rests entirely upon the applications.

The Crypto API provides services for encrypting/decrypting data, authentication

using digital certificates, and encoding/decoding of Abstract Syntax Notation One,

ASN.l. ASN.l is a flexible, abstraction notation that allows a variety of data types to be

defined. Simple types such as integers and bit strings can be used to create structured

types such as collections of one or more other types. Crypto API is compatible with

many CSPs that perform the actual cryptographic functions, such as encryption and

decryption, as well as key storage and key protection.

The Microsoft cryptographic system consists of three elements: the operating

system, the applications, and CSPs. Applications interface with the OS through the CAPI

29

layer, and the OS communicates with the CSPs through the Cryptographic Service

Provider Interface (CSPI). Figure 3.2 from [ALFOO] represents the relationships between

the three cryptographic system elements.

Application
layer

CAPI

System1

CryptoSPI ■

Service
: provider

layer

Application A Application B Application C

>*r

:i U

Operating system

A

T3»~

Cryptographic
Service
Provider

(CSP) #t 1

Cryptographic
Service
Provider

CCSP)#2

— -—ll
Cryptographic j

Service s
Provider

(CSP)#3

Figure 3.2 Microsoft Cryptographic System Elements [From: ALFOO]

Windows CE includes two predefined CSPs. They are the RSA Base Provider,

which supports digital signatures and data encryption, and the RSA Enhanced Provider,

which supports 128-bit key encryption. Windows CE supports only a subset of the

Crypto API 2.0 features present in Windows NT/2000. The supported CAPI 2.0 features

are X.509 encoding and decoding of digital certificates, and certificate management. The

Coredll module exports CAPI 1.0 functions, and the Crypto32 module exports CAPI 2.0

functions. All of the CAPI functions are defined in the Wincrypt.h header file [ALFOO].

If needed, designers can add smart card functionality to their Windows CE

devices by supporting CAPI through the use of Smart Card Service Providers (SCSPs).

The Windows CE smart card subsystem links the smart card reader hardware and the

30

applications. Usually, the smart card hardware vendor provides the appropriate SCSPs.

Windows CE provides the subsystem components for the resource manager, resource

manager helper library, smart card reader helper library, and sample smart card reader

drivers. The smart card interfaces are exported by Windows CE, and it is up to the

designer to implement the system details and interface with the smart card reader

hardware.

Caution should be taken when relying upon the OEM security functions, read-

only protected registry keys, device identifiers, protected kernel mode, application

security services, and the dial-up boot loader. These security services can be useful, but

should not be relied upon to provide complete self-protection of the Windows CE

operating system. Much of the security is left up to the OEMs to implement, if they so

choose, instead of being enforced by the operating system itself.

For added protection, it might be advantageous to place the Module Certify

functions in the operating system, and ensure that those functions are always used. The

trust level model could be revised to add more than three levels, and to offer increased

granularity. For example, a trust level could be defined that allows reputable sources

(trusted code on a Navy server) to update the OS on a handheld device located on a ship.

Another trust level could permit the user of the handheld device to update a simple

application, such as a text editor, without having the ability to update the OS.

Support for the dial-up boot loader could be completely removed, if that feature

was not required. The OS could be built with protected (non-kernel) mode only, to

provide more memory protection. By making careful design choices at build time, the

self-protection of the operating system configuration could be enhanced.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

IV. WINDOWS CE PENETRATION TESTING

A. INTRODUCTION

Penetration testing is a method used to discover the security strengths and

weaknesses of an operating system. Typically, the method is similar to the white-box

approach in software testing. In white-box testing, the system design and implementation

are known and can be examined to determine if they meet the requirements. In the class

penetration testing exercise conducted at the Naval Postgraduate School, the approach

taken was a mix of white and black-box testing, due to the fact that the Windows CE 3.0

source code was not available. Black-box testing allows the software engineer to derive

sets of input conditions that will fully exercise all of the functional requirements of a

program [PRE97]. Black-box testing is done at the interface level, without knowing

exactly what is contained "in the box". This is similar to some forms of penetration

testing, in that the exact implementation of the system is not always known, but only how

it behaves. Black-box techniques are applied in order to determine the presence or

absence of classes of errors, so that inferences can be made about the errors in the system

as a whole. Penetration testing techniques allow the identification of classes of system

security vulnerabilities. Once the vulnerabilities are identified, steps can be taken to

eliminate them.

People of very different backgrounds break into computer systems for a variety of

reasons: malicious hackers testing their skills, disgruntled employees seeking revenge, or

those engaging in episodes of serious espionage. In each case, computer systems are

inviting targets for attack. Security testing attempts to verify that the protection

33

mechanisms built into a system will, in fact, protect it from obvious attacks. In order to

try out the protection mechanisms of Windows CE, penetration testing was performed on

the Maxall configuration of Windows CE 3.0, installed on three CEPCs in a research lab

environment (see Appendix A for more details). The testing was conducted during a

three month time span by students of the Naval Postgraduate School enrolled in the

course CS 4600, Secure Systems, in the Fall of 2000. The course was taught by

Professor Cynthia Irvine.

Penetration testing on Windows CE was done to assess the system's overall

vulnerability to attack. Two major goals were to test for correct functional behavior and

to examine the penetration resistance of the system. The CE OS was probed for any

obvious problems, such as design, implementation, or configuration errors. During the

penetration testing exercise, the teams attempted to circumvent the security features of

the system, and tried to exploit design weaknesses as well as undocumented interfaces.

B. THE FLAW HYPOTHESIS METHOD

Clark Weissman originated the idea of the Haw Hypothesis Method (FHM). FHM is

explained in the paper by Richard Linde, written when he was employed by the System

Development Corporation [LIN75]. FHM was applied to several operating systems,

including Adept 50, GCOS, CP67, VM/370, KVM/370, and MVS. It was incorporated

into the TCSEC evaluation process of high assurance systems [DOD85]. FHM provides

a systematic way to conduct system penetration testing and is composed of six main

phases. The phases are as follows:

1. definition of purpose and goals
2. background study
3. brainstorming and flaw hypothesis generation
4. flaw hypothesis verification

34

5. generalization of system weaknesses
6. documentation of results

FHM is somewhat cyclic in nature, because the phases from background study to

hypothesis verification can be repeated as needed or until time constraints are imposed.

Results from applying FHM to a system can be used to isolate generic system functional

flaws which can point to areas of the OS design needing revision: The success of FHM

does depend in part on the experience of the penetration team personnel and their

familiarity with the system being tested. However, even for relatively inexperienced

teams, FHM provides a logical framework in which to approach the penetration testing

exercise. FHM views flaws as undocumented capabilities, and penetration is defined as

exploitation of those flaws. The FHM team attempts to systematically discover flaws in

the target system.

1. Definition of Purpose and Goals

Phase one of FHM involves defining the purpose and testing goals. First, a

baseline must be established. The testers should decide on the criteria for success, based

upon the details of their particular exercise. The subject of the analysis should be

determined, and the testers should bound the environment and establish the available

resources. The purpose behind the penetration testing helps define the entire testing

process. The testing can be done for various reasons, such as certification purposes, as

part of a risk assessment, or for research. In our case, the course requirements set the

goals for our penetration testing. This focused the analysis and defined specific criteria

for success.

35

2. Background Study

Background study is the focus of phase two in the penetration testing

methodology. The optimal FHM team would already be experienced with software

systems, security products, penetration tools, penetration methodologies, historical

penetration information, and known system vulnerabilities. However, a background

study should be done in order to understand the target system and its specific

configuration. There are many sources for background study materials. System

documentation, user documentation, configuration documentation, and bug reports were

all utilized in the background study phase. If available, design documentation, discussion

with the design team, and implementation source code can also be used in the

background study phase to determine what the designers intended for the system.

During the background study, potential weaknesses can be found by paying attention to

what the designers recommend not to do. Operator commands and messages can

sometimes be exploited. All the implications of rarely used functions might not have

been considered by the designers. Generic weaknesses might be identified by examining

known problems with the system. Without performing the background study, the next

phase of the FHM would not be as effective.

3. Brainstorming and Flaw Hypothesis Generation

Phase three consists of brainstorming and flaw hypothesis generation. This is

where all the background study, team expertise, and system knowledge combine to

produce the best guesses for possible system flaws. Team members who are area experts

can educate the rest of the team on an aspect of the system and encourage group

discussions. In our penetration testing exercise, team members became familiar with one

of five areas and shared their findings with the team. The areas were the Object Store

36

and File System, Process and Thread Management, Communication and I/O, Memory

Management, and the Graphics, Window, and Event Manager Subsystem (GWE). In this

phase, Flaw Hypothesis Sheets are generated. Each sheet documents the following

information: the flaw hypothesis, problem identification number, the originator who

found the flaw, the investigator, references, type of vulnerability, the date of

investigation, and the date of flaw confirmation. A Flaw Hypothesis Database is

constructed using the data in the Flaw Hypothesis Sheets. The database is essential in

completing a successful penetration test. Without a way to organize and sift though the

data gathered, it is hard to generalize the flaws into broad, useful categories.

In order to hypothesize attacks, the common methods of system penetration were

considered. The teams examined how spoofing, masquerades, unauthorized access,

covert processes, pre-existing debugging entry points, and denial of service (DOS)

through resource utilization would apply to Windows CE. The teams also searched for

design errors, bad design assumptions, and compromises that were made to achieve better

performance. As Flaw Hypotheses were generated, each team examined them and

discarded the ones that were incorrect or outside the scope of the testing. The remaining

hypotheses were prioritized in terms of ease of exploitation, probability of success, and

likely payoff.

4. Flaw Hypothesis Verification

The fourth FHM phase consists of the verification of the Flaw Hypotheses that

were generated in phase three. Gedanken, or thought experiments, were done with the

information gathered in the background study. Often, the validity of a Flaw Hypothesis

can be determined by carefully thinking through all of the steps of the penetration

37

experiment. The gedanken experiments are the most important phase of the penetration

study, due to the fact that most uncovered flaws are found by performing this type of

experimentation [LIN75]. The verification phase is often the most difficult part of the

entire penetration exercise, so a time limit is usually set for completion. Usually the

easily exploitable, high payoff hypotheses are considered first, and sometimes the

difficult, low payoff hypotheses are discarded in order to avoid wasting time and effort.

Public and custom designed software tools can be used to help in the verification task.

5. Generalization of System Weaknesses

Phase five involves the generalization of system weaknesses. In order to discover

hidden trends of system deficiencies, flaws should be generalized so that they fit into

broad classes. Problems in one area could possibly be mirrored in another area, so the

testers should be aware of this principle and exploit it. Generalization of flaws is a team

activity, where an inductive process may be used to generate classes of flaws.

VO control is often one class of errors. Programs could have unrestricted access

to the system through device drivers. In this area, there are often semi-privileged

instructions and poorly designed protection mechanisms. Sometimes there are no

protection mechanisms at all. Access control is another class of errors. There are often

problems with configuration, and compromises between modern and legacy features.

Some errors belong in the class of algorithmic flaws, such as badly generated random

numbers. Timing errors happen with unsynchronized processes, when temporary objects

are unexpectedly modified, and when threads interact in strange ways. Data and resource

sharing allow for flaws, because shared memory can allow the bypass of security

38

mechanisms. Undocumented functionality is another class of flaws, because little known

hardware or interface features can be exploited in unexpected ways.

6. Documentation of Results

Phase six of the FHM, the final phase, is the documentation of results. In any

scientific testing, documentation is essential for establishing a permanent record of what

was done, what was discovered, and what conclusions were drawn from the process. The

penetration testing experiment should be repeatable, and the documentation assists in the

effort to duplicate confirmed attacks. The documentation can be used as a starting point

for other tests, provides justification for incomplete testing, and may be helpful in

counteracting the weaknesses found. However, open publication of the findings might be

damaging to whoever owns the system, so care should be taken when releasing

documentation. There is some unresolved debate as to the best way to deal with known

system flaws, with arguments both for and against immediate public awareness.

Basically, the release of documentation depends specifically upon the conditions in which

the penetration study was done. Some circumstances may require that the documentation

becomes proprietary information. In our case, the study was an academic exercise

without access to system source code or internal design documentation. Therefore, our

penetration study documentation was for the benefit of the students involved.

C. LAB AND TEST CONFIGURATION

For the CS 4600 penetration testing exercise, the class was divided into three

teams of four to five students. Each team, working independently, used FHM for

conducting penetration tests on the Windows CE 3.0 operating system. Each of the

members of a team were assigned one of the following roles: Lab Administrator, Web

Searcher, Tools Manager, Database Manager, and Report Editor. In addition to their role

39

duties, each team member investigated a Windows CE area, such as Memory

Management, in great detail.

1. Penetration Team Roles

The lab administrator was responsible for the test hardware and software

installation, configuration, and backups. The administrator also handled general team

management. The web searcher scoured the Internet for any known Windows CE

penetration flaws, and any related flaws that might be extended to apply to the test

system. The searcher also looked for useful tools to pass on to the tools manager, and for

relevant system background information. The tools manager discovered, evaluated, and

in some cases, created tools that could be used in the system penetration effort. The

database manager was responsible for designing, implementing, and managing a database

to store all of the generated flaw hypothesis information. The report editor was tasked

with organizing and editing the final written report at the conclusion of the penetration

exercise.

2. Lab Setup

In order to have a baseline test environment for all teams, some preliminary lab

setup work was required. First, the teams needed some Windows CE systems to attack.

Since this was a penetration testing exercise, and a goal was to gain a deeper

understanding of the system operation, the flexible CEPCs were used rather than the

consumer-oriented handheld devices. A CEPC is a typical desktop computer, with

specific hardware, running Windows CE as its operating system. Li most respects, the

CEPC behaves just like its smaller cousins. However, using the Microsoft Platform

Builder tool, it is possible to build a customized version of CE by choosing components

and even adding custom built ones. It is much easier to download new versions of CE to
40

the CEPCs rather than to the Read Only Memory (ROM) chips on handheld devices. In

order to maximize the penetration efforts, the ability provided by the CEPCs to download

custom applications and build system configurations was desired.

In the penetration testing lab, three test stations were configured. Each attack

team had their own test station. A test station consisted of a CEPC, otherwise known as

the target, and a development Windows 2000 desktop PC. The CEPC and development

computer were connected by a local isolated network, and a serial debug connection on

COM1. For details about the CEPC, see Appendix A.

The following software was installed on the development PCs: Platform Builder

3.0, eMbedded Tools 3.0, the Handheld PC Software Development Kit (SDK), the

PocketPC SDK, MS Office, and MS Visual Studio. ActiveSync 3.1, a Microsoft

application for synchronizing and transferring files between a desktop PC and a CE

device, was also installed on the development PC. No security protections other than the

defaults were applied to the development PC. One administrator account was configured,

which the team shared. A peculiarity of the Platform Builder application was that to use

it, a person must be logged on as an local administrator, preferably as the administrator

who installed the software. If a non-administrator account was used, Platform Builder

was inaccessible. When a user logged on to an administrator account that differed from

the account used for installation, Platform Builder behaved erratically. So, to avoid these

problems, Platform Builder was installed with the administrator account given to each

team, and everyone was advised to utilize those accounts.

Once the CEPCs and development PCs were configured, the next big challenge

was to establish communications between them. Major effort was expended to

41

accomplish two tasks: downloading a CE image from the development PC to the target,

and transferring files between the two systems using ActiveSync and repllog (a Windows

CE remote networking service). Configuring the CEPC device networking (used for

Pocket Internet Explorer, etc.) was quite difficult, and after some effort, was abandoned.

Difficulties were also encountered when attempting to use the Platform Builder Remote

Tools, which were supposed to allow examination of the CEPC heap and registry, among

other features.

Platform Builder can be used to create a platform and build an OS image, as

explained in Appendix A. The OS image is transferred from the development PC into

system memory on the CEPC. The CEPC is then booted using a boot loader application

on a CEPC boot floppy disk. Therefore, a CEPC does not require a hard drive, but

sometimes one is added for the convenience of booting a standard CE image. In our

penetration testing lab, we had two CEPCs with hard drives, and one CEPC without.

A CEPC can be connected to a development PC using an Ethernet or parallel

connection, allowing an OS image to be downloaded to the CEPC. The two options for

image download and target debugging are Ethernet or parallel port. In both cases, debug

status messages are output from the target via the COM1 serial port and can be viewed

with the HyperTerminal application on the development PC. These status messages can

be useful when troubleshooting the development PC - target connection. For our test

stations, the Ethernet download and debug option was chosen because it was much faster

than using the parallel port.

Prior to establishing the development PC - target connection, many sources were

consulted. The Platform Builder online help, and the "Microsoft Windows CE Platform

42

Builder 3.0 Getting Started Guide" [MICOOb] were used as references for the entire

connection process. The CEPC vendor, Special Computing, also offered invaluable

assistance in setting up the connection. Useful information was also found on the

Platform Builder newsgroups, which are listed in the references section of this thesis.

a. CEPC Boot Disk

The first step in the connection process was to create a CEPC boot floppy

disk. The following procedure is given by the "Microsoft Windows CE Platform Builder

3.0 Getting Started Guide" [MICOOb].

1. Run Websetup.exe, located in the Program Files \ Windows CE Platform Builder \ 3.0
\ CEPB \ Utilities directory. By default, this application installs Webimgnt.exe in
C:\Winnt.

2. Run Cepcboot. 144, a disk image file that is located in the Program FilesVWindows CE
Platform Builder\3.0\CEPB\Utilities directory. The Web Image NT dialog box
appears.

3. Insert a floppy disk into the floppy drive on your development workstation, and then
choose either Disk A or Disk B to specify the floppy disk drive used to create the
book disk.

4. Click Cancel after the boot disk has been created.
5. Verify that the boot disk contains the correct files.

Table 4.1 lists the files that should be contained on the CEPC boot floppy disk.

File Name Description

Eboot.bin This is a binary file that is an Ethernet boot
loader component

Loadcepc.exe This is an executable file that loads the
boot loader image Eboot.bin

Autoexec.bat This is a batch application file that must be
edited to match your system configuration.

Config.sys, Himem.sys, Command.com These are required MS-DOS files
Readme.txt This file contains booting instructions
Drvspace.bin This file adjusts the settings in the

Drvspace.ini file to mount a drive
Io.sys, Msdos.sys These are MS-DOS system files

43

Sys.com
Vesatest.exe

This file is an MS-DOS application
This is a DOS executable file. It tests the
VGA BIOS on the video card to ensure that
it is compatible with the Windows CE 3.0
default display driver. The Readme.txt file
included on the boot floppy disk provides
additional information about this.

Table 4.1 Files on the CEPC Boot Disk [From: MICOOb]

If the CEPCs were purchased from Special Computing, as in our case, a

ready-made CEPC boot floppy disk was provided. In addition to the files listed above, a

directory named \DRV\RTL8029 exists on the Special Computing boot disk. A

configuration tool for the network card (NIC) is included in that directory, as well as a

program net.exe, which sets up a NetBEUI connection. NetBIOS Extended User

Interface (NetBEUI) is suited for use in small workgroups or Local Area Networks

(LANs). It is possible to install a NetBIOS gateway and the NetBEUI client protocol on

all remote access servers running Windows 2000 and most Windows networking clients.

NetBEUI is not routable, and the only configuration required for the protocol is a

computer name. In our penetration testing lab, the NetBEUI protocols were not utilized.

After a CEPC boot disk was obtained, it was necessary to modify the

autoexec.bat file on the disk to reflect the test station target configuration of NIC IRQ,

base address, and static IP address (if desired). There is supposed to be a way to leave

the IP address blank and use Dynamic Host Configuration Protocol (DHCP), but that

option was not implemented in our penetration testing lab.

44

Next, the CEPC network card settings were determined. The easiest way

to accomplish that was to use the utilities provided on the CEPC boot disk. Upon system

boot, a menu was displayed on the target as follows in Figure 4.1:

MS-DOS 6.22 STARTUP MENU

1. Boot CE/PC (local nk.bin)
2. Boot CE/PC (ether via eboot.bin with /D:2 (640x480x8))
3. Boot CE/PC (ether via eboot.bin with /L:1024x768x8)
4. Boot CE/PC (ether via eboot.bin with /L:800x600x16)
5. Boot CE/PC (ether via eboot.bin with /L:640x480x24)
6. Boot CE/PC (parallel device)
7. Run VesaTest program and list valid display modes
8. Setup RTL8029 Ethernet Adapter
9. Clean Boot (no commands)

Figure 4.1 CEPC Boot Menu

The menu item 8 was chosen, Setup RTL8029 Ethernet Adapter, which

initiated the NIC setup program. Then the network card settings could be observed,

including the NIC IRQ and base address. For our CEPCs, the settings were IRQ=9,

base=D800. Next, the CEPC boot floppy was taken to another computer (non-CEPC)

and the autoexec.bat file was edited to reflect our settings. Any ASCII text editor is

suitable for this purpose, but Notepad was used. The IO base address must be specified

in hexidecimal, but the IRQ can be either a decimal or a hexidecimal value. After the

REM comment block, the next three set lines were changed as follows:

set NET_IRQ=9
set NET_IOBASE=0 (value of 0 signifies an auto search for the base address)

(D800 could have been used instead since it was known)

set NET_IP=:10.10.10.25 (the static CEPC IP address belongs here)
(note: it must be on the same subnet as the
Win 2000 development computer)

45

After editing, the file was saved back to the CEPC boot floppy disk as

autoexec.bat. In editing the file, there is a major pitfall lurking in the "set NET_IP="

line. In spite of being mentioned in the autoexec.bat comments, it was very easy to omit

the colon after the equal sign and before the valid static IP address. If the colon is

omitted, the CEPC and the development workstation can not communicate, no matter

how many times it is tried. So, it is very important that the set NETJP line is written in

the following manner : "set NET_IP=: 10.10.10.25" . The quote characters are

not included when typing the line.

The CEPC is not Plug-and-Play enabled, so special care must be taken to

prevent device IRQ and 10 base address conflicts. In the readme.txt file on the CEPC

boot disk, the default IRQ and 10 base settings for all standard CE device drivers are

listed. This list can be checked for conflicts with the CEPC network card settings.

b. Serial Debug Connection

Now that a CEPC boot disk has been created and edited, the next step in

downloading a CE image is to establish the serial debug connection between the CEPC

and the development computer. CEPC debugging text messages are output via the serial

port COM1, and these can be helpful in diagnosing connection problems.

One would think that any available null modem cable would be adequate

for the connection between the CEPC COM1 port and the development computer COM1

port. Sadly, this is not the case. A standard for the pin connections of null modem cables

does not exist. A generic "null modem" cable will seem to work for the debugging

messages, but will have problems later on communicating with ActiveSync. Through a

long, tedious process of lab experimentation, Platform Builder online newsgroup

46

research, and discussions with Special Computing, the correct cable pin-out was

discovered. Two 9-pin female connectors were used. The proper cable pin connections

for CEPC to desktop computer communication are as follows in Table 4.2. The pins

listed in the End 1 column should be connected to the pins listed in the End 2 column.

Cable Connector Pins for End 1 Cable Connector Pins for End 2

1 and 6 4

2 3

3 2

4 1 and 6

5 5

7 8

8 7

9 - No connection 9 - No connection

Table 4.2 CEPC Serial Cable Pin Connections

Following the discovery of the correct pin-out, it was learned that a null

modem cable matching that description could be commercially purchased. The necessary

cable is a Belkin F3B207-10, Pro Series, PC Compatible, DB9 Female/Female File

Transfer Cable. Once the cable is connected on COM1, output messages are

automatically sent from the CEPC upon system boot. These messages can be viewed

with the Windows HyperTerminal application.

47

c. Ethernet Downloading

It is possible to download a Windows CE OS image from the development

PC to the target via an Ethernet connection. In order to download an image, three main

steps must be performed. These steps are :

1. Set up the hardware connections. Ethernet cables, hubs, and serial cables were used.
2. Edit the autoexec.bat file on the CEPC boot disk to reflect CEPC configuration.
3. Configure the connection in Platform Builder on the development PC.

Steps one and two were discussed above. Step three, configuring Platform

Builder, was accomplished using the menu options of the Platform Builder Integrated

Desktop Environment (IDE). After opening Platform Builder and building a platform,

Target / Configure Remote Services can be selected from the menu. Under the

Services tab, Ethernet should be selected in both the Download and Debugger drop-

boxes. Figure 4.2 contains a Screenshot of the required selections.

Configure Remote Services *l
Services j Ethernet j Parallel j Serial j

Select a transport for each service:

Download / Target Control (CESH) / Target Messages (CETerm):

Ethernet

Debugger:

] Ethernet

Data Visualization Toois:

H

j Not Available

Service Settings...

OK Cancel Apply Help

Figure 4.2 The Configure Remote Services Dialog Box [MICOOb]

48

The Service Settings button allows the configuration of the target

messages, target control service, and the kernel debugger. By default, target messages

and target control are started upon download. The kernel debugger configuration only

matters when a debug version of the OS image has been built. By default, kernel

debugger services are not started.

The purpose of the next step was to assist the Plaform Builder software in

recognizing the CEPC target so that a device number could be automatically assigned.

The Ethernet tab should be selected, as in Figure 4.3 below.

Configure Remote Services x]

Services Ethernet j Paraflel] Serial J

Reset a device connected to the Ethernet network to automatically add it to the
New devices Kst. Click the Add Device button to manually add it.

New Devices: Current Device:

Add Device...

MAC Address:

IP Address:

CEPCLS231Ü5

MAC Address:

004005715A41

IP Address:

172.30.95.41

OK Cancel Apply Help

Figure 4.3 The Configure Remote Services Dialog Box, Ethernet tab
[From: MICOOb]

After reaching this stage on the development computer, the CEPC boot

disk was inserted into the CEPC, and the CEPC was reset by cycling its power. When

the boot menu was displayed on the CEPC, as in Figure 4.1, menu choice 3, "Boot

49

CE/PC (ether via eboot.bin with /L: 1024x768x8)", was selected. This was equivalent to

selecting menu choice 9, "Clean Boot", and typing the command

loadcepc /b:38400 /c:l /e:1:0:9:10.10.10.25 /v eboot.bin

at the command prompt. The loadcepc command is documented in the Platform

Builder online help, and it allows the loading and booting of an OS image onto a CEPC.

Figure 4.4 explains some of the common options that may be set with loadcepc

command switches.

loadcepc /b:38400 /c:l /e:l:0:9:10.10.10.25 /v eboot.bin

/b = Connection Baud Rate

/c = Serial Communications Port Used

/e = NIC card type, 10 base, IRQ, and IP address

fv = Display Additional Status Information

eboot.bin = file to download from the development PC

Note: NIC card type may be either : 0 for a SMC9000 card

1 for a NE2000 card

Figure 4.4 Loadcepc Command Options

When using the loadcepc command, the valid baud rates are 9600,

19200, 38400, 57600, and 115200. The default baud rate is 19200. The communications

port may be either 1 for COM1: or 2 for COM2:, with the default value of 1. The NIC

card type must always be set to 1, for a NE2000 card because the other option is not

supported at this time. The IP address is optional if Dynamic Host Configuration

Protocol (DHCP) is used. There is a /L switch for setting the display characteristics, but

50

it was not used directly. Instead, the /L switch was used only indirectly as a choice from

the batch file menu.

Following a menu choice or typed command, the CEPC screen will either

clear or display 'Jumping to 0x00132B58 ' . This behavior of the CEPC can be

ignored for now. On the development computer, a device number should be displayed in

the New Devices text box of the Configure Remote Services Dialog Box, with the

Ethernet tab selected. In order to add the device as the current device, the arrow button

must be depressed. Now the device number should appear in the Current Device drop-

down box. Next, the OK button was depressed to confirm the selection of the current

device.

After the CEPC has been recognized by Platform Builder, a Windows CE

OS image may be transferred from the development PC to the CEPC. On the

development PC, this was initiated by selecting Target / Download Image from the

Platform Builder menu, with the desired platform open. HyperTerminal was also started

on the development PC in order to view the CEPC debug messages. The next step was to

reboot the CEPC, with the boot floppy disk in the a: drive. The appropriate choice was

made from the boot menu, which was number 3, "Boot CE/PC (ether via eboot.bin with

/L: 1024x768x8)". Finally, the CEPC and development PC were communicating, and a

progress bar appeared in Platform Builder on the development PC. After approximately

ten seconds, the OS image had downloaded to the CEPC, and the CEPC booted up. The

CEPC Windows CE 3.0 startup screen displayed, which was a very welcome sight.

51

d. File Transfer Using ActiveSync

Besides downloading an OS image, another useful action is to connect the

CEPC to the development computer via ActiveSync and repllog. This allows for the

transfer of files between the two systems, in the penetration testing exercise, this file

transfer ability was made available to place custom attack programs on the CEPCs.

ActiveSync is the desktop PC file synchronization utility, and repllog is the remote

networking component of Windows CE.

First, a physical serial connection had to be made from the CEPC COM1:

port to the development computer's COM1 port using the Belkin cable discussed above.

COM 2 ports would work as well, although the Platform Builder debug messages are

only output via COM1. Next, the ActiveSync 3.0 software was installed on each

development PC. This software can be downloaded from the Microsoft web site, and it is

also included on Platform Builder installation disk 11.

ActiveSync presents a wizard-like interface upon its first use, which does

not allow access to the connection settings menu until a mobile device is recognized as a

valid connection partner. But, the ActiveSync application does not recognize a CEPC as

a mobile device. This created a problem in configuring ActiveSync. The problem was

circumvented by attaching a more conventional Windows CE device, in this case a

Symbol PPT 2700, to its cradle with a serial connection to COM2 on the development

PC. The Symbol was recognized by ActiveSync as a mobile device, and a partnership

with that device was formed. Next, Connection Settings was chosen from the

ActiveSync menu bar. This action opened the Connection Settings dialog box, and the

com port setting was changed from COM2 to COM1. Leaving this dialog box open on

52

the development PC, it was time to initiate repllog on the CEPC. Start Menu, and

Run were chosen on the CEPC. Next, repllog was typed at the CEPC command

prompt. Back on the development PC, a screen displayed which asked the user if he or

she would like to create a partnership. The choice "NO" was selected in order to connect

the CEPC as a guest. Then, it was possible to transfer files between the development PC

and the CEPC. After the initial connection was made, one could connect later by simply

launching ActiveSync on the development PC and then typing repllog at the CEPC

command prompt.

The partnership and file synchronization features were not built into the

Platform Builder communication components for incorporation into CEPC OS image

builds. This means that the CEPC can only connect as a guest, and the development PC

will break the connection if a partnership is attempted. There is a Microsoft QFE (Quick

Fix Engineering) patch available for download to fix that problem, but it was not used in

the penetration testing lab.

To summarize, the lab setup consisted of configuring three CEPCs, three

development PCs, and establishing OS image download and file transfer capabilities for

each test station. After the initial test station configuration, the responsibility for

maintaining and tweaking the setup shifted to the administrator of each team.

D. PROPOSED FLAW HYPOTHESES

After several weeks of background study, the penetration testing teams proposed

several flaw hypotheses in each of the core Windows CE areas. Effort was made to

classify the flaws into general classes of errors, in an attempt to discover trends in the

53

system weaknesses. A selection of the flaw hypotheses generated are discussed in the

following sections.

1. File System /Object Store

This Windows CE subsystem contains persistent storage such as the CE file

system, registry, and property databases.

a) Windows CE file shadowing allows for the creation of a file in RAM that has the

same name as an existing system ROM file. For all practical purposes, the newly

created RAM file supercedes the existing ROM file. The user can only see the

RAM file, and that file is executed instead of the ROM file. This feature was

provided for the ease of upgrading system files and drivers. The hypothesis was

that an adversary could utilize the file shadowing capability to replace system

files with malicious applications. Also, the registry, which contains system

settings, could possibly be spoofed in this manner. [AGAOO], [BRIOO], [CLEOO]

b) The property databases store application data, such as names, addresses, and

phone numbers. A hypothesis was proposed that an attacker could access or

modify a user's personal information through the property databases. The

property databases could also be covertly copied over a network during device

synchronozation. Currently, there are no access restrictions on these databases.

[AGAOO]

c) It was suggested that perhaps a malicious user-defined file system could be

installed and used to compromise the OS. Windows CE currently provides

support for installing additional file systems, but there are no administrative

constraints on who is allowed to install these file systems. This implies that

54

anyone can install file systems on a CE device, potentially gaining full access to

the target system and its data. [AGAOO]

2. Process and Thread Management

This subsystem contains the process and thread model, and the round-robin,

priority-based scheduler.

a) A hypothesis was proposed that since CE has a shared memory space for all

processes, it is possible for an application to read the memory area of another

process with the call ReadProcessMemory. This penetration could potentially

lead to the modification or theft of data. [AGAOO]

b) Another problem could happen if a file handle reference is moved so that it points

to another memory location after the file has been opened. This could allow the

file handle to point to some malicious code, or cause a denial of service if a

critical file could not be located. [AGAOO]

c) One hypothesis is that any process has the ability to terminate any other process.

If this is the case, any user application would be able to terminate critical system

processes. A malicious process could also terminate an application and start

another one spoofing the original. [AGAOO]

d) A CE process is not limited in the number of threads it can spawn. Therefore, a

hypothesis was that a process could launch a very large number of threads and use

up all of the system memory, causing a denial of service. [AGAOO]

55

3. Communication and I/O

This subsystem contains the native and stream drivers, the driver interface to the

kernel, networking support, ActiveSync support, infrared support, USB support, and

streams to files or consoles.

a) It might be possible for an application to call the CreateFile function with a file

name that is not null-terminated. This flaw would fall in the category of buffer

overflows. If the CreateFile function limits the number of characters that it

copies into its memory space by reading until it reaches the null-terminator, it

could be possible to insert malicious code into the file name string and cause

CreateFile to overwrite its own return stack. [AGAOO]

b) If the function wvsprintf is called with mismatched arguments, it might be

possible to discover some information in the returned format specifier data

structure. This information could be data that would normally not be provided to

the calling process. [AGAOO]

c) Another hypothesis proposed the exploitation of the CE NetBIOS net commands,

which are similar to the Windows 95 NetBIOS commands and might share their

vulnerabilities. [CLEOO]

d) A denial of service attack might be possible by overwhelming the CE device with

TCP/IP packets. A program similar to "Win Nuke" could be used. This would be

especially devastating for wireless CE devices. [CLEOO]

4. Memory Management

This subsystem deals with the allocation and freeing of memory, paging,

maintaining the heap, and managing virtual memory.

56

a) One flaw hypothesis in this area is that the cache manager might be overloaded by

preemptively loading unnecessary pages into memory. If successful, system

performance could be downgraded, causing many page faults and possibly

undermining the stability of the system. [AGAOO]

b) Another hypothesis is that the system could be kept busy flushing the cache for

long enough that the network connection is lost. If malicious code causes the

cache to flush for more than two thousand milliseconds, the network connection

could be broken because the system is not responding. This situation could allow

a spoof attack, because the system network response could be simulated, when in

fact the system was down. [AGAOO]

c) It might be possible to mark a file as sequential, allowing intelligent read-ahead to

bring in the next 192 KB in memory. The memory read immediately following

the file could contain cryptography secrets or other important data. This captured

data could be stored and later exported to a desktop PC during ActiveSync of the

CE device. [AGAOO]

d) By modifying the read input buffer during a read operation, it may be possible to

create an unstable system state. The Windows CE Programming documentation

advises against doing this, because the result is undefined. This is a timing attack

that would have to be repeated five or six times before its effectiveness could be

ascertained. [AGAOO]

5. Graphics, Window, and Event Manager Subsystem

This subsystem contains the user input system, the event manager, the window

manager, raster graphics API, touch screen driver, and font support.

57

a) The GWE module is responsible for managing the power-saving suspend mode.

This could possibly be exploited to turn off the power saver, thus running down

the batteries and causing the loss of files stored in RAM system memory. The

user might believe that the CE device would turn off normally, but because the

timeout interval had been tampered with, the batteries could run out and user data

would be lost. [CLEOO]

b) Another flaw hypothesis exploits the fact that the CE OS only supports an 8-bit

color scheme. Therefore, a denial of service attack would run an application that

would set the resolution higher than 8-bit, causing the device display to function

incorrectly. [CLEOO]

c) Windows CE only supports a 256 color palette. The OS does not include a palette

manager, and there are no checks to ensure that palette settings are valid.

Malicious code could manipulate the palette to support only one color. This

would also cause the display to be unreadable. [CLEOO]

d) There is a problem with stale process handles in the GWE subsystem. When

applications are terminated, the handles to those processes remain active instead

of being released. A 2-bit reuse count indicates how many times a slot in the

handle table has been reused. The OS designers claim that the reuse scheme

works seventy-five percent of the time. However, the possibility of stale handles

exists, and could be exploited to gain improper access to files or memory areas.

[BRIOO]

58

6. Miscellaneous Flaw Hypotheses

The CE device password may be easy to crack due to the fact that text input is

limited on a CE device. Most users will choose a short password that is easy to enter

using a stylus, and will not use symbols, such as @ or $, in a password. These habits

might cause the password to be a weak entry point to the system. [CLEOO], [BRIOO]

Many CE devices include a built-in microphone for dictation and recording sound

clips. This hardware could be exploited by a malicious application to record ambient

sounds or private conversations while the user was unaware of the fact. [BRIOO]

E. PENETRATION TEST CONCLUSIONS

After intensive study, the penetration test teams were successful in identifying

potential flaws and vulnerabilities in the Windows CE operating system. Using the Flaw

Hypothesis Method, the teams identified the main components of the operating system,

discovered potential weaknesses in those components, and tested the weaknesses through

gedanken experiments. Finally, the team findings were documented to preserve the

system knowledge gained.

Caution is recommended when using Windows CE due to the lack of basic

security features, such as authentication or a trusted path. Numerous flaws were found

that could be exploited to compromise system security. Also, by adding a mobile CE

device to an existing computer network, a weakest link might be introduced to the system

as a whole.

Windows CE does offer some process separation features, and allows the use

of certificates to install trusted modules at build time. However, these features are

59

inadequate by themselves and should be incorporated into a coherent security

architecture.

60

V. REDESIGN FOR SECURITY

A. EXISTING DESIGN

Because the Windows CE devices are so versatile and mobile, many

governmental uses for these devices can be envisioned. In the rush to incorporate new

technology, we should keep in mind how it will affect existing computer systems and

networks. Especially, the security impact of the new technology should be examined.

Using wireless PDAs may be convenient and time-saving, but the devices could

introduce a weakest link in the overall systems security because of the current design of

the operating system. By taking a closer look at the components and design of Windows

CE, we can make suggestions on how to improve its self-protection.

1. Windows CE Design Goals

The Windows CE operating system was first introduced in 1996. It was

specifically designed for supporting embedded applications, which are typically limited

in resources. There are many applications for devices based upon the Windows CE OS.

A few examples are commercial building automation systems, handheld communications

devices, manufacturing process controllers, and medical data acquisition devices.

A major design goal of Windows CE was to support the requirement of minimal

memory usage. The size, or footprint, of the operating system itself can be controlled by

adding or removing modules to obtain the specific desired configuration. Several of the

modules can be further divided into components, for increased flexibility. Hardware

resources such as ROM and RAM can be minimized for a particular system design by

selecting a minimum set of modules and components. Component modules are defined

61

by Microsoft as Windows CE modules that include one or more optional components.

Examples of component modules include Coredll, Gwes, Filesys, and 01e32. These

component modules can be customized to meet the needs of the embedded application

designer.

Three key design decisions were made in Windows CE. The first decision was to

partition the operating system design into modules, in order to support hardware upgrades

and enhance system flexibility. Second, Microsoft decided to build a portable OS that

would not depend on just one OEM for the device platform. This allows OEMs the

choice of several processors to choose from to fit their project needs. Third, they

considered what the system would be used for, and what capabilities might be desired.

For example, since it was determined that only a limited number of applications would

be running at any given time, the OS was limited to supporting thirty-two processes.

Also, in order to relax the level of code redundancy, the OS kernel was allowed the

ability to possibly corrupt applications. The designers knew the kernel would not be very

secure, but it was viewed as a reasonable compromise. However, some protections were

built in so that the applications would have a harder time inadvertently crashing the

kernel. For compatibility, the designers decided to support a subset of the Win32 API.

This provided Win32 applications programmers a jump start to writing Windows CE

applications.

2. Building Windows CE

A Windows CE system can be built using Microsoft Platform Builder (PB).

Version 3.0 is the current release at the time of this writing, and it supports the data

visualization tool as well as kernel debugging and profiling. Data visualization allows

62

the developer to visually monitor and track the state of system data while a platform

operating system executes. Since Windows CE can be customized to support a small

footprint with a subset of desired features built in, the general approach is a modular one.

A system is built using a platform, a project, and various modules, which are composed

of components. Microsoft defines a module as an executable or dynamic-link library that

usually implements self-contained functionality. A module contains components that

can be replaced or removed as needed. In order to meet the constraints set for a system's

memory requirements, careful thought should be given as to which modules and

components to include. PB provides seven sample project configurations that have been

tested and are guaranteed to work. These configurations range from Minkern, with a

minimal kernel and a very simple application, to Maxall, which is the complete version of

CE, including a soft input panel, handwriting recognition, WinNET FTP and

communication applications. It is strongly recommended that new systems be based

upon one of the provided configurations. There are several environment variables that

can be set to modify the pre-tested configurations. The environment variables are

contained in the file Cesysgen.bat. It is interesting to note that the password component

can be removed from the Minkern configuration, and the security component can be

removed from the Mincomm configuration. However, for a dedicated embedded device,

the password or security components might not be required

A system generation phase (Sysgen) was added to support componentization.

Sysgen integrates a built version of the OS, installed with Platform Builder, that has all

the libraries for all the components, the master header files, the module definition files,

and a configuration file that specifies the desired components. Three tasks are performed

63

during the Sysgen phase. The selected and necessary parts of the OS are linked together,

the master header files are filtered to take out the parts that aren't exposed by the selected

components, and the module definition files (.DEF) are filtered so that only the desired

functions are exported.

Componentization was good in that it allowed four major benefits. They are:

scalability, the ability for OEMs to make system design tradeoffs, the ability for OEMs to

replace code with their own customized version, and minimizing the overhead as new

features are added to the system.

Two of the big problems encountered in componentization were dependencies and

configuration testing. All of the logical units that already had interfaces were made into

separate components, such as the Graphics, Window and Event Manager (GWE) module.

Unfortunately, approximately ten percent of the system was not very modular at first and

so it was hard to break it into components. For example, someone might want to build a

system that had communications without a window manager, but because the system

used the PostMessage function and PostMessage used something else in the window

manager, the window manager would have to be included anyway. The modules were

rewritten for Windows CE 2.0 with the goal of isolating dependencies across the

modules.

Componentization also resulted in difficulties in testing all of the possible

configurations. For just ten components that could be either included or excluded, the

Quality Assurance department would have to test a great number of possible

configurations. As the number of components increases, the amount of testing quickly

64

becomes unmanageable. The Microsoft designers decided to compromise and allow a

limited set of component configurations to be chosen.

B. WINDOWS CE KERNEL MODULES

The Windows CE kernel consists of modules and components, which are listed in

Table 5.1.

Module Listing

Module Description Components

Coredll Operating core
dynamic link library

accel_c, coreimm,
coreloc, coremain,
coresioa, coresiow,
coresip, corestra,
corestrw, cryptapi,
fileinfo, fileopen,
fmtmsg, fmtres,
lmem, mgdi_c,
rectapi, rsa32, serdev,
shcore, shexec,
shmisc, shortcut,
tapilib, thunks,
wavelib, wmgr_c

Nk Windows CE kernel

Table 5.1 Kernel Modules Table [From: GAR99]

In Coredll, the only required components are coremain, lmem, and thunks.

Coremain contains the Windows CE base functionality. Lmem is the local heap. Thunks

is the name of the component that handles the older 16-bit code, making the OS

backwards compatible. The thunks component takes care of the kernel to Win32

thunking mechanism. The generic thunking mechanism provides functions that allow a

16-bit application to load a Win32-based DLL, get the addresses of its exported

functions, call the functions, convert addresses, and free the Win32-based DLL.

65

C. WINDOWS CE OBJECT STORE MODULES

1. Design Background

The CE object store and file system are quite different from the Windows NT file

system. An obvious difference in CE is the lack of any of the types of security protection

offered by the NT model.

The CE object store provides persistent storage that is available for use by

applications. It is the part of memory not in use by the operating system, and is built on

the internal heap using the system RAM, ROM, and optionally mounted PC cards. The

maximum size of the object store is 256 MB for CE version 3.0, and 16 MB for previous

versions. The object store has three main components: the file system, the registry, and

property databases.

There were four major design goals for the heap. The Microsoft designers wanted

it to be small to conserve memory. They also wanted the heap to be robust against power

loss and crashing. They needed it to be fast, and have a small working set.

A new proprietary file system was implemented in order to minimize overhead

and get the most out of the available storage memory. The file system is a lightweight

layer on top of the heap that supports files stored in ROM as well as files stored in RAM.

One interesting thing about the file system is that it allows file shadowing. If a

file is created in RAM that has the same name as an existing ROM file, the RAM version

shadows the ROM file. This means that only the RAM file attributes are seen, and the

RAM file is executed instead of the ROM file of the same name. The ROM file is still

there, but you can't access it. If the RAM file is deleted, the ROM file attributes will be

seen again. Shadowing means that you can hide the ROM file size, but not its name.

66

The CE registry is similar to the one found in Windows NT, but it is a limited

subset. However, it is Win32 compatible. The registry stores data about applications,

drivers, user preferences, and other configuration settings. The data stored in the registry

is persistent and shared among all applications. In the Windows CE registry, there is no

way to deny read access to applications. Therefore, care should be taken when storing

data in the registry because there is no real way to protect the data. The registry uses the

native logging and transactioning of the heap. Since CE does not support the registry

security features, a default security descriptor is assigned to the CE registry keys.

It is very likely that the CE registry is vulnerable to the same types of attacks used

on the NT registry. The CE registry shares common functionality with the NT registry,

but has none of the NT registry security features, so that will offer possibilities for

exploits. The CE registry may be stored on a PC card and copied into a device's system

RAM at boot-up. This could offer a possible way to overwrite the valid registry with

whatever keys are desired.

The final component of the object store is the property database. Property

databases store application specific data, and can be built on the internal heap or on

mounted volumes. The property databases are loosely based on the Microsoft Messaging

API (MAPI). Examples of applications that use the property databases are: Inbox,

Calendar, and Tasks.

In a CE property database, only one level of hierarchy is allowed. This means

that a record cannot contain another record. A single record cannot be shared among

databases, and it is not possible to lock a database to restrict access. Transactioning

occurs after each individual database call.

67

There are at least three ways to access a property database. The Pocket Access

application, CE API functions, and Microsoft Foundation Classes (MFC) can all be used.

Active Data Objects (ADO), which are used to access relational databases, may also be

used.

D. WINDOWS CE I/O AND COMMUNICATIONS MODULES

Windows CE provides many options for communication with the desktop, the

Internet, and other Windows CE devices. The OS supports a variety of Win32

communication APIs for modems, networks, and serial and infrared communications.

Smartcards, external file systems, and flash memory can also be incorporated. Native

drivers provide support for graphics, the touch screen, and audio, among other things.

Stream drivers exist for serial communications. Network and Universal Serial Bus

(USB) drivers are also supported.

1. Windows CE Driver Model

The OEM Adaptation Layer (OAL) is the layer between the device hardware and

the Windows CE kernel. It is comparable to the Hardware Abstraction Layer (HAL) in

Windows NT. When considering the CE driver model, it is somewhat instructive to think

of the components being arranged in layers, with hardware at the bottom. Next comes

the OAL, and various drivers that interface directly with the hardware. Above the OAL

are the CE kernel, the window manager and user subsystem GWE, and the device

module. However, the model is not composed of true layers, because the drivers can

communicate directly with the hardware, bypassing the OAL, and can also communicate

with the kernel and the GWE module. In fact, the native drivers, which include display,

battery, keyboard, audio, and touch screen, are a part of GWE. Some driver services are

68

exported in the Device module to make writing drivers for serial and PC card devices

easier.

There are four main categories of Windows CE device drivers: native drivers,

stream interface drivers, NDIS network drivers, and USB drivers. The native device

drivers are linked with the OS. The stream drivers can be installed at any time. Because

exploring all of the drivers in detail is beyond the scope of this thesis, the concentration

will be placed on the stream drivers. A summary will be given for the other driver types.

Sample drivers of all types are provided in the Windows CE Device Driver Kit.

To understand where the drivers fit into the big picture, it helps to take a look at

the system startup sequence. When a Windows CE device is turned on, the hardware is

first initialized. Next, the OEM startup code runs. After that, the kernel is initialized,

then the OEM init function runs, which is one of the OAL functions inside of the Nk

module in Nk.exe. The kernel start up, then the Filesys, GWE, Device, and other

modules are loaded. Finally, GWE loads up the native drivers and Device loads the other

drivers. User level stream drivers can also be loaded at any time thereafter.

2. Native Drivers

The native device drivers are split into two parts: the module device driver

(MDD) and the platform device driver (PDD). These driver models are unique to

Windows CE, and are provided for convenience. Usage of these models is not required,

but is highly encouraged. The MDD provides the interface to Win32, which allows the

OEM to make changes only to the PDD. Through the PDD, the OEM can control the

hardware, without having to worry about the software interface from the driver to Win32.

So, the OEM has the choice of writing a monolithic driver, or just implementing a

69

smaller piece that interacts with the MDD. The print and display drivers are monolithic.

Each monolithic native driver must export a specific set of functions, called the Device

Driver Interface (DDI). The DDI is called by the GWE module at run-time. The layered

drivers use another interface called the Device Driver Service-provider Interface (DDSI).

That interface consists of the PDD functions that are called by the MDD. The touch

panel, keyboard, PC card socket, and USB drivers are layered drivers.

3. Stream Drivers

Stream drivers are a generic type of driver, because they always expose the same

functions. This is in contrast to native device drivers, which have a unique interface.

Stream drivers are typically used for third-party devices such as bar-code scanners, GPS

receivers, and IR receivers. Using the stream driver interface, devices are presented as a

type of special file, and use the file system API to interact with applications. For

example, the CreateFile function would open a device. Stream drivers are loaded by

either the Device module or by specific applications, instead of by the GWE module like

native drivers. They are usually implemented as Dynamic-Link Libraries (DLLs) and are

located in the Windows directory.

There is a strict naming convention for stream drivers. The format is three upper-

case letters, followed by a single-digit index (1-9, and 0 used for 10), with a colon at the

end. For example, "COM1:" is a valid name for the first serial port. The three letters act

as a key to access the driver functions, and the digits identify a specific drivers.

There is a user-level process called the Device Manager Module that acts as an

interface between the kernel, registry, and stream interface drivers. Its main purpose is to

load and unload stream devices as needed. There are three ways that stream drivers can

70

be loaded. One way is at boot time. Upon boot, Device Manager loads all the drivers

listed under the HKEY_LOCAL_MACHINE\Drivers\Builtin registry key. Another way

of loading is when a device is connected. For example, when a PC card is connected, the

Device Manager calls the native socket driver to get a Plug and Play identifier. That id

is then checked against the registry values in the key

HKEY_LOCAL_MACHINE\Drivers\PCMCIA. If found, the driver is loaded. If not

found, the Device Manager calls the detection functions listed in

HKEY_LOCAL_MACHINE\Drivers\PCMCIA\Detect. If one of the functions can

handle the device, the Device Manager registers that driver for the device. The last way

to load a stream driver is used when an application tries to open an unloaded driver. The

application can load the device itself and then open and access it. This last scenario

typically happens with devices like digital cameras.

There are two ways to unload stream drivers. If the Device Manager is notified of

the disconnection, the corresponding entry is removed from

HKEY_LOCAL_MACHINE\Drivers\Active. The Device Manager also calls the

DeregisterDevice function to remove the device name from the file system and

FreeLibrary to unload the DLL from memory. Alternatively, if an application loaded

the stream device, then the application has to unload the DLL from memory on its own.

If it fails to do this, some of the valuable memory storage space will be wasted holding a

DLL that is not being used.

All stream interface drivers should implement some standard functions. The

functions and their descriptions are listed in Table 5.2.

71

Driver Function

???_Close ()

???_Deinit ()

???Jhit ()

???_IoControl ()

Description

Closes the device associated with a handle

Device Manager calls this to de-initialize the driver

Device Manager calls this to initialize the driver

Sends a device-defined command to the driver

???_Open ()

???_PowerDown ()

???_PowerUp ()

???_Read ()

???_Seek ()

???_Write ()

Opens a device for reading or writing

Powers down the device, if capable

Powers up the device

Reads data from the device

Moves the data pointer within the device

Writes data to the device

Table 5.2 Stream Driver Functions [From: GAR99]

Stream drivers can be used either by a single application at a time, or by multiple

applications, depending on whether a handle to the device or NULL is returned by the

???_Open function. This allows the designer to decide which policy best fits the

anticipated device usage.

4. NDIS Network Drivers

The Network Driver Interface Specifications (NDIS) drivers used in Windows CE

are derived from Windows NT. They allow networking protocols like TCP/IP and IrDA

to be independent from a network interface card (NIC). Windows CE supports Ethernet

72

and IrDA miniport drivers that conform to the NDIS 4.0 implemented in Windows NT.

NDIS provides the glue between the network interface cards, the network drivers, and the

network protocol stacks. However, monolithic network drivers and full NIC drivers are

not supported under Windows CE NDIS. Some other features that are not supported are:

general direct memory access, contiguous physical memory allocations, and wide area

networking through NDIS. For miniport drivers, Windows CE is mostly source-code

compatible with Window NT, so they share almost identical NDIS APIs. This fact

speeds up Windows CE driver development time for people who are already familiar

with Windows NT miniport drivers.

5. USB Drivers

Universal Serial Bus (USB) is an external bus architecture for connecting USB-

compatible peripheral devices, like a mouse or keyboard, to a host computer. USB was

not designed for use as an internal bus, but rather as a communication protocol that

supports serial data transfers between a host system and its USB-compatible peripherals.

Today, you can find USB connectors on common items like joysticks, digital cameras,

MP3 players, and PDAs. USB provides a single, well-defined connector type, supports

hot plugging and Plug and Play, and provides power-saving and suspend modes. There is

currently no support for connecting a Windows CE device as a USB peripheral to a host

computer.

6. Module Listing

Table 5.3 describes the modules that are related to common native and stream I/O

drivers.

73

Module Description Components

Device Installable device
manager

Dualio PCMCIA client
driver module for the
Socket
Communications
Dual Serial I/O

Elnk3 Elink Ethernet driver

Gwe Graphics, Events, and
Windowing
subsystem

Only the driver-
related components

are listed here.

Gcache, gwectrl,
gweshare, gwesmain,

serdev

Inetcore Windows Internet
DLL core

Ircomm IrDA communication

Irdastk IrDA stack

Ndis NDIS network
module

Pel PCL printer driver

Prnerr Printer port error
information and
dialog

Prnport Printer transport layer

Remnet Remote networking

Rnaapp Remote networking
application support

74

Serial Serial Driver

Softkb Soft Input Panel (SIP)
device driver

Sramdisk SRAM (PCMCIA)
card

Tapi Telephony API

Tcpstk TCP/IP stack

Trueffs TrueFFS block device
driver

Unimodem TAPI service
provider for AT
command modems

Usbd USB module

Usbmouse USB mouse driver

Wininet Internet API support

Winsock Winsock services

Xircce2 Xircom Ethernet
driver

Table 5.3 Driver Modules Table [From: GAR99]

E. WINDOWS CE I/O SERVICES

Windows CE provides rich support for several communication services. A few of

the offered services are ActiveSync, Remnet, and Repllog. Serial and IR

communications are also helpful services that can be controlled directly through the use

of built-in drivers.

75

1. ActiveSync Service

ActiveSync allows the user to synchronize the programs and data contained on a

Windows CE device with a desktop computer. The service is configurable, but the

default is to overwrite the identical desktop computer files with those contained on the

CE device. ActiveSync also installs new applications from the desktop computer onto

the CE device. In its previous incarnation with Windows CE 2.x, ActiveSync was called

"Windows CE Services" and provided much of the same functionality. ActiveSync can

store a backup of the CE device, to be restored later in the event of a catastrophe. It also

provides the ability to view and transfer files from the desktop PC to the CE device.

From a vulnerability standpoint, ActiveSync could potentially provide a channel for

captured data stored in a file to be exported to a desktop PC whenever the user synchs the

CE device.

2. Remnet Service

Windows CE provides a connection application that can be launched from the

Control Panel. The application is called Remnet, and it establishes a connection from the

CE device to a host computer. This application cannot be used at the same time as

Repllog (discussed below). Remnet allows applications on the CE device to use a direct

serial cable connection or dial-up networking to the host computer.

3. Repllog Service

Repllog is another communication service that is used in conjunction with

ActiveSync. It cannot be used concurrently with Remnet. Repllog provides connectivity

from the CE device to the host computer, and also monitors the connection and provides

data synchronization services. ActiveSync executing on a host computer can detect

Windows CE devices running Repllog, but it can not detect CE devices running Remnet.

76

Repllog is a service offered directly by the Windows CE operating system, and must be

included at build time.

4. Serial and IR Communications

Several serial drivers are provided with Platform Builder. They are: the native

serial driver, Serial.dll; the 16550 Serial UART driver, Serl6550.1ib; the PC card serial

driver, Ser_card.lib; and the dual serial driver, Dualio.dll. Caution should be exercised

when using serial and IR ports, because the information transmitted could be intercepted

and analyzed by a malicious application.

F. RECOMMENDATIONS

Windows CE is a customizable, general purpose, embedded operating system that

can be used as a base for supporting many everyday tasks. A PDA operating with

Windows CE can be used for networking, barcode scanning, maintaining databases, or

the playback and recording of sound files. However, the impact of security on the

Windows CE operating system was not a concern during its original design. Speed and

system performance were the primary concerns, and security of the operating system

itself was not a high priority objective. Future work could include analyzing the

Windows CE 3.0 source code directly for dependencies and other obstacles to system

self-protection.

The utilization of Windows CE devices in government or military environments

requires that the devices offer some form of assurance. The devices should be considered

as a single component among many that are addressed by a well-designed security policy.

Due to the system's flexibility and familiar user interface, Windows CE devices could

77

become an important asset in such tasks as inventory control, if the proper security

precautions are taken.

It is recommended that a streamlined version of the Windows CE OS be designed

to meet the customer's specific requirements. The system should be optimized for the

tasks it will perform. To reduce system vulnerability, unnecessary components of the OS

should be removed. For example, support for external file systems could be removed,

thereby controlling the device's ability to mount external volumes.

If there are no plans to update the OS remotely, the Dial-Up Boot Loader (or

DUB) could be removed from the OS altogether. If it is used, the DUB should be

configured to respond in a safe, non-compromising manner if device authentication fails.

The default behavior upon failure is to halt the download process and display a user

message. It might be a good idea to record the DUB actions in an audit log on the server

as well.

Support for infrared (IR) communication provides a convenient way to transfer

programs or data between Windows CE devices. However, there are cases in which data

transfer should be restricted, and removing the IR support from the OS would aid in that

restriction. Without the IR support, it would be much harder for rpgue applications

(either malicious or non-approved) to spread from one device to another. This would

simplify controlling the Windows CE device configuration.

The Windows CE OS should be built using protected (non-kernel) mode only, as

this affords the most protection of the system memory. Using protected mode restricts

the physical memory access of user level threads. This decreases the possibility that a

user application could undermine the stability of the kernel.

78

The OEM Certify Module functions should be implemented in order to prevent

unknown modules from being loaded, restrict access to the system APIs, and prevent

write access to certain parts of the system registry. As currently implemented, the

functions provide a superficial attempt at compliance, rather than true protection. This

means that all driver modules should not be,routinely assigned a trust level of

OEM_CERTBFY_TRUST. Drivers and other new code modules would have to be

reviewed by an outside source to determine their trust level. After approval, the drivers

could be distributed from a controlled source. Any cryptography used in the Certify

Module functions should posses an adequate key length, and the algorithms themselves

should be free of known flaws. Due to their visibility and the likelihood of attacks, the

Microsoft Cryptographic Service Providers might not be the best choice for

implementing cryptographic algorithms. In certain environments, however, it is possible

that the CSPs might be adequate for meeting design requirements.

Each PDA should be assigned a unique, immutable device ID number. A data

structure, DEVICEJD, is provided for storing the unique device ID. Bounds checking

should be done upon the return of a DEVICEJQD, in order to avoid buffer overflow

problems. The device ID could be used for some primitive identification and auditing

upon synchronization of the device to a trusted server. The decision to download new

applications or OS updates to the device from a trusted server could be based in part on

the device ID. However, other security mechanisms should be in place, so that the device

ID is not the only criteria relied upon.

When a CE device is synchronized with a desktop computer, it uses ActiveSync

to communicate via a serial port, USB port, IR port, network connection, or modem.

79

There is currently no identification or authentication of the CE device or the computer it

connects to. Building this authentication into a communications protocol is an area for

further research. It might also be possible to create a sort of VPN, or virtual private

network, between the CE device and the desktop to prevent the disclosure of data that is

sent over the link. Right now, PDA devices are very vulnerable to tools such as

PortMon, which can read the transmitted data directly. PortMon is a freeware utility

available at the URL www.svsinternals.com.

Finally, the importance of the human element in computer security can not be

overstated. With the simplified architecture of the Windows CE OS, anyone who has

access to the physical device has access to all of the information stored on it. The CE

device should never be left unattended or given to someone who is potentially

untrustworthy. A mandatory user password or smartcard system should be used to

restrict access to the CE device. A system lock feature should be implemented to

suspend the device after a defined period of inactivity. This would help prevent an

unauthorized person from using the device.

Overall, Windows CE devices can be used efficiently for performing a variety of

tasks. They provide flexibility, mobility, and a familiar user interface. Before deploying

CE devices in organizations where security is a concern, some modifications to the

generic CE operating system should be made. These changes might include removing

capabilities of the OS that are not needed, building the kernel in protected mode only,

implementing the Certify Module functions, usage of a unique device ID, strengthening

the synchronization protocols, and increasing user awareness of the vital importance of

good security practices.

80

APPENDIX A - PLATFORM BUILDER AND WINCE TOOLS

This appendix discusses some useful software and hardware tools associated with

Windows CE. Platform Builder is the integrated development environment for building

the Windows CE operating system. The CEPC is a hardware reference platform for

downloading and testing Windows CE operating system builds. Embedded Visual Tools

provides support for building C++ and Visual Basic applications for Windows CE.

A. MICROSOFT WINDOWS CE PLATFORM BUILDER 3.0

Platform Builder (PB) is a tool for building custom Windows CE operating

systems for embedded system devices [MICOOb]. The eleven CD-ROM installation kit

includes the Windows CE 3.0 operating system, a set of embedded development tools, an

integrated development environment (IDE), support for the Microsoft run-time libraries,

the ActiveSync application, and sample code. An Add-On pack containing more

debugger tools, a limited version of the source code, and Board Support Packages (BSPs)

for various processors can also be obtained from Microsoft.

Nine standard configurations of the Windows CE OS can be built using PB

[MICOOa]. The configurations are: Minkern, Mininput, Mincomm, Mingdi, Minwmgr,

Minshell, Maxall, IESample, and DÜB. Descriptions of these OS configurations are

listed in Table A. 1.

Configuration

Minkern

Mininput

Mincomm

Mingdi

Minwmgr

Description

a minimal version of Windows CE

provides user input and native device driver support

includes serial communications and networking

includes Graphics Device Interface (GDI) support

provides window management

81

Minshell includes almost all components, provides the Task Manager and
the Command Processor

Maxall a fully configured version that includes several communication
applications

IES ample a demonstration version that includes Microsoft Internet
Explorer browser components

DUB includes the Dial-Up Boot Loader for downloading and updating
the OS

Table A. 1 WINCE OS Configurations [MICOOa]

In the Windows CE penetration testing exercise, the Maxall configuration was

used. It is a complete version of the CE OS, containing all non-conflicting modules. The

following table, Table A.2, was taken from the Platform Builder online help, and it lists

the features and components included in Maxall. Similar tables exist in the PB online

help for the other standard OS configurations.

Functional area Features
Component/module

names
Kernel/OAL Memory, process Nk

Compression support Nkcompr
CoreDLL Full NLS-capable APIs Coreloc

Local heap and memory allocation Lmem

Messaging, user input, windowing, and
GDI support

Wmgr_c, Mgdi_c

Communications support for serial
communications and TAPI

Serdev, Tapilib

Crypto 1.0 APIs with two CSPs:
Rsabase.dll and Rsaenh.dll

Cryptapi

WAV API support Waveapi

IMM support Coreimm

Stdio support Coresioa(w)

C runtime support Corestra(w)

Filelnfo and FileOpen common dialogs Fileinfo, Fileopen
Shell API support Shellapis

82

Soft input panel support, including sample
IM (English/Korean/Japanese)

Softkb, Coresip

FormatMessage API support and Message
resources

Fmtres and Fmtmsg

Keyboard accelerator support Accel_c

TAPI API support Tapi, Tapilib

WAV APIs Waveapi

Crypto APIs Cryptapi

File system RAM, ROM and IFS support Fsysram

Database Fsdbase

System registry Fsreg

Password support Fspass

FAT file system Fatfs

Device Manager Generic device driver support Device

GWES Messaging, and user input support
including support for standard window
controls, such as buttons, edit controls,
and scroll bars

Msgbeep, Msgbox,
Msgque, Uibase, Edctl,
Scbctl, Btnctl, Cascade,
Clipbd

Japanese language support, including
support for edit controls, JME, and
Japanese characters

Hwxjpn, Msime98,
Imejpp, Edimejpn

Korean language support, including
support for edit controls, JME, and
Korean characters

Edimefek, Mshime97

Timer message support Timer

Clipboard support Clipbd

Power management Getpower

Notification LED support Nled

GDI support, including TrueType, text
drawing, palette, and printing support

Mgtt, Mgdrwtxt, Mgpal,
Mgprint

Customizable Touch Screen Calibration
UI

Tchui

Network UI dialog boxes Netui

WAV API and PCM manager Waveapi

IMM support Immthunk

Window and dialog box management Wmbase, Dlgmgr

Customizable Startup, Out of Memory,
Touch Screen Calibration, and

Startui, Oomui

83

Notification UIs

User notifications API support Notify, Notifymin

Windows CE common controls and
common dialog boxes

Commctrl, Cmbctl,
Cascade, Btnctl

Communications:
Serial

Basic serial communications support Serdev

IR Emulated Serial Port support IrComm

Serial over PC Card Serial

Communications:
Networking

Winsock APIs Winsock

Schannel with SGC support, and
SCHNLUSA (128-bit)

Schannel, SCHNLUSA

TCP/IP and IR Tcpstk, Irdastk

Network Driver Interface Specification
(NDIS)

NDIS

DHCP DHCP
SLIP/PPP PPP
RAS PPP

WNet/SMB redirector Redir, Netbios
Communications:

Other
Telephony (TAPI) TAPI, Unimodem

Customizable Network UI Netui

IP configuration tool Ipconfig, Route

IPHelper APIs Iphlpapi
NTLM Ntlmssp
MSMQ Mqoa, Msmqapi, Msmqd,

Msmqdm, Msmqrt
Sample network drivers: NDIS Ne2000, Xircce2

Management SNMP server Snmp
SNMP MIDs Snmp_mibii,

Snmpjiostmib
Device drivers Display Display

PCMCIA Card and socket services PCMCIA
Keyboard and mouse Kbdmsg.lib, mouse
Battery Getpower
Notification LED Nled
Touch screen Tchui

84

USB HID driver Usbhid, Usbmouse

CardTest, sample PC Card driver

NDIS minidrivers Ne2000, Xircce2

ATA disk Atadsik

SRAM disk Sramdisk

Serial, sample Serial.dll

Audio Gsm610, Audio

COM/OLE COM, OLE, OLE Automation, Istorage or
full DCOM/COM support

Com, Olemain, 01eaut32,
Docfile, Mfs, Nep

DCOM

Add-in
technologies

Handwriting recognition support Hwxusa

Spelling checker Splusa

Microsoft Message Queue Server
(MSMQ)

Mqoa, Msmqapi, Msmqd,
Msmqdm, Msmqrt

Microsoft Jscript® development software Jscript

HTTP Server Httpd, Httpdadm,
Httpdsvc

Windows CE shell
components

Command Processor Cmd

Control Panel applications Commctrl

Handheld PC style shell Explorer, Asform, Ce
shell

Applications Communications

Microsoft® Pocket Internet Explorer
Internet browser

Iexplore

Microsoft® Pocket Word Pwd_res, Pword, Pwwiff

Inbox Labledit, Mailutil,
Msgstore

Help for Windows CE Peghelp

Debugging Shell.exe and ToolHelp.dll Shell, Toolhelp

Table A.2 Maxall Components [From: Platform Builder Online Help]

85

Environment variables may be set to control the driver configurations. Sample

settings are contained in the Cesysgen.bat file. For more information on the environment

variables, see the online Platform Builder help.

1. Installation

In order to install and use Platform Builder on a desktop PC, local administrator

privileges are required. It is important to use the same administrator account when

installing and using Platform Builder. The installation is accomplished through the use of

wizards. To install, the user must insert Platform Builder Disc 1 and follow the

instructions displayed on the screen. If Ethernet downloads will be used, that choice

should be selected at installation time. Note that selecting parallel port downloads will

disable local parallel port printing. So, a local printer can not be used if the parallel port

download option is selected. Also, to save hard disk space, the unwanted processors can

be deselected in the "CPU Selection" dialog box. To build images for the CEPC, only

the x86 microprocessor support is needed. Therefore, all other processors can be

deselected.

2. Hardware Requirements

The Platform Builder installation requires an x86 desktop PC running Windows

NT or Windows 2000 Professional, with Service Pack 5 or later. The recommended

processor is one that is equivalent to a Pentium 200 MHz or higher. Other requirements

are: 64 MB RAM, 1.36 GB of hard-disk space available for a typical installation or 7.8

GB for the complete installation, CD-ROM or DVD-ROM drive, VGA or higher

resolution monitor, Microsoft compatible mouse, bi-directional parallel port, serial port,

Ethernet network card (optional), network hub (optional).

86

3. Building a Platform

The best way to build a platform, or Windows CE OS image, using Platform

Builder is to follow the documented procedure in the Platform Builder online help or the

Getting Started Guide [MICOOb]. There are four main steps when building a platform.

Those steps are:

1. configure the platform
2. make the OS image bin file
3. transfer the platform to a target device (such as a CEPC)
4. debug the platform

Platforms may be built with kernel debugging either enabled or disabled, and

release or debug versions of the platforms can be built. The debug versions are larger in

size, so care should be taken that enough RAM exists on the target device to hold the OS

image. Kernel profiling can also be built into the platform to measure the system

performance. Refer to the Platform Builder online help for more details. Generally, the

documented procedure was helpful, and no major problems were encountered while

building platforms.

B. CEPC

Platform Builder supports the CEPC, which is an x86 hardware development

platform. In many situations, the CEPC is more convenient to use, since it is easy to

download new OS images as they are developed. It is possible to assemble a CEPC from

basic components. The necessary hardware is listed in the Getting Started Guide

[MICOOb]. Very minimal information is provided about building a CEPC, and our

attempts in that area were not successful. An easier path is to purchase a ready-made

CEPC from a third party vendor, such as Special Computing.

87

C. MICROSOFT EMBEDDED VISUAL TOOLS 3.0

Microsoft eMbedded Visual Tools 3.0 is an applications development suite that

allows C++ and Visual Basic programs to be written for Windows CE devices. It is very

similar to Microsoft Visual Studio, but allows the development of Windows CE

applications rather than Windows NT, 98, or 2000 programs. Embedded Visual tools

contains an editor, debugger, and help files, all within a convenient graphical

environment. Embedded Visual Tools can be ordered at no cost from the following URL:

http://www.microsoft.comAVindows/embedded/ce/tools/emvt30order.asp.

D. SUMMARY

This appendix described some relevant hardware and software tools that are

useful for the development and testing of customized versions of Windows CE. Platform

Builder and CEPCs are excellent tools for developing a customized operating system, and

applications can be developed using Embedded Visual Tools.

88

APPENDIX B - IMAGO: 4D AND SOFTWARE ANALYSIS TOOLS

This appendix describes various software analysis tools. The tools were

investigated in order to find the most suitable application for analyzing the Windows CE

source code. One important criteria for tool selection was the ability to map out

dependencies between modules in the source code.

A. C AND C++ SOFTWARE ANALYSIS TOOLS COMPARISON

Several reverse engineering and software analysis tools were examined for

possible use in analyzing the Windows CE 3.0 source code, hnagix 4D was chosen for

its ease of use and compatibility with the Microsoft Visual Studio compiler. Table B.l

compares the tools that were evaluated. The column labeled "Demo Version" indicates

the availability of a demonstration version of the tool.

Item Tool Name OS
Supported

Cost Demo
Version

1 CIAO/CIA Solaris, SGI Free for
education

use

Yes

2 PBS, Software Bookshelf Linux,
Win32,
Solaris

Free Yes

3 hnagix 4D Win32, Jrix,
Linux,
Solaris,
HP-UX

Per
installation,

approx
$2000 per
computer

Yes

4 +lReverseC Solaris Contact
sales

Yes

5 DMS Software Engineering Toolkit Win32 Contact
sales

No

6 j Grasp Win32,
Linux, Java,

and more

Free Yes

Table B. 1 Software Analysis Tools Comparison

89

B. DESCRIPTION OF SOFTWARE TOOLS

The following is a brief description of the software analysis tools, and a listing of

where the tools can be obtained.

1. CIAO/CIA

CIAO / CIA is a reverse engineering tool with a graphical user interface. It

allows the user to query and browse structural connections in software and document

repositories. It can be found at the URL http://www.research.att.com/~ciao/.

2. PBS

This tool is web based, and operates within a web browser. The user can navigate

information representing large software systems. The tool shows the relationships

between files, but it is uncertain whether it can permit viewing at the function call level.

It can be found at the URL swag.uwaterloo.ca/pbs/.

3. Imagix 4D

This tool can be used to reverse-engineer large, complex, or unfamiliar software

written in C/C++. It has a graphical color 3D view of dependencies, supports the

creation and printing of reports, and allows integrated text editing of the source code. It

can support the parsing of several compiler types through customized compiler

configuration files. Information about this tool can be found at the URL

www.imagix.com.

4. +lReverseC

This tool parses C code, and graphically displays the calling structure. It can be

found at the URL www.plus-one.com/+lReverseC fact sheethtml.

90

5. DMS Software Engineering Toolkit

This toolkit provides a set of tools for carrying out custom re-engineering of

medium and large-scale software systems. It supports analysis, porting, translation,

interface changes, and/or domain-specific program generation. This tool had no demo

and their website was rather confusing. The toolkit can be found at the URL

www.semdesigns.com.

6. jGrasp

jGrasp makes extensive use of Control Structure Diagrams. The

Control Structure Diagram (CSD) is a control flow and data structure diagram that is

designed to fit into the space that is normally taken by indentation in source code. The

intention of the CSD is to improve the comprehension efficiency of source code and, as a

result, improve software reliability and reduce software costs. The purpose of GRASP is

to provide this diagram in the context of a full-featured development environment. At this

point it would be called a "light" IDE, as there are no integrated debuggers or navigation

and related features. This tool is free, easy to use, and provides a good sense of the

source code complexity. A complexity profile graph is a visualization of the complexity

of a program unit, based upon a profile metric designed to compute complexity at various

levels of granularity. Unfortunately, jGrasp does not generate complexity profile graphs

for C and C++, but only for Java and Ada at this time. The tool can be found at the URL

http://www.eng.auburn.edu/department/cse/research/grasp/.

After investigating these six software analysis tools, Lnagix 4D was selected to

aid in the analysis of the Windows CE 3.0 source code, hnagix is capable of analyzing

very large software projects, and was developed specifically for reverse engineering

91

legacy code. It has very good support for the Microsoft Visual C++ compiler, which is

probably the most similar to the compiler used on the Windows CE source code, hnagix

4D also has a very understandable graphical user interface, and is comparatively easy to

use. The selling point of this tool was its graphical representation of dependencies at the

file, module, and function levels. This is exactly the functionality that was needed to

examine the relationships between modules in the Windows CE 3.0 source code.

92

LIST OF REFERENCES

A. BOOKS AND ARTICLES

[AGAOO] Agar, Chris; Brock, Jerome; Bums, Titus; Stavritis, George; "CS 4600
Penetration Study Report: The Group that Shall Remain Unnamed", Naval
Postgraduate School, Monterey, CA, (December 2000).

[AND72] Anderson, J. P., "Computer Security Technology Planning Study.", ESD-
TR-73-51, Vol. 1, Hanscom AFB, MA, DTIC-AD-758206, (1972).

[ALF00] ' Alforque, Maricia, "Creating a Secure Windows CE Device", Microsoft
Technical Article,
http://msdn.microsoft.com/librarv/default.asp ?URL=/library/techart/
winsecuritv.htm, (October 2000).

[ATT76] Attanasio, C. R., Markstein, P. W., Phillips, R. J., "Penetrating an
operating system: a study of VM/370 integrity." IBM System Journal No.
7 102-116,(1976).

[BEL73] Bell, D., LaPadula, L., "Secure Compute Systems." Air Force Elec. Syst.
Div. Report ESD-TR-73-278, Vols. I, H, and m, (November 1973).

[BIS78] Bisbey, Richard, Hollingworth, Dennis, "Protection Analysis: Final
Report." ISI/SR-78-13, ARPA ORDER NO. 2223, (May 1978).

[BRIOO] Briggs, Jaime; Glover, Mark; Negi, Chandan; Pereira, Barbara; "CS 4600
Penetration Study Report: The X-Team", Naval Postgraduate School,
Monterey, CA, (December 2000).

[CLE00] Clement, Gary; Del Grosso, Michael; McCalister, Jim; Mosley, Harold;
Thompson, John; "CS 4600 Penetration Study Report: The HackMasters
Group", Naval Postgraduate School, Monterey, CA, (December 2000).

[DIJ68] Dijkstra, Edsger W., "The Structure of the "THE"-Multiprogramming
System." Communications of the ACM, Vol 11, No. 5 341-346, (May
1968).

[DOD85] DoD Trusted Computer System Evaluation Criteria, 5200.28-STD, (26
December 1985).

[GAR99] Gareau, Jean Louis, Windows CE From the Ground Up, Anabooks,
(1999).

93

[GOL79] Gold, B. D., Linde, R. R., Peeler, R. J., Schaefer, M., Scheid, J.F., Ward,
P. D., "A Security Retrofit of VM/370." National Computer Conference
(1979).

[JON99] Jones, Anthony, Ohlund, Jim, Network Programming for Microsoft
Windows, Microsoft Press, ISBN: 0735605602, (1999).

[LAN94] Landwehr, Carl E., Bull, Alan R., McDermott, John P., Choi, William S.,
"A Taxonomy of Computer Program Security Flaws, with Examples."
ACM Computing Surveys, 26.3, (Sept 1994).

[LIN75] Linde, Richard R, "Operating system penetration." National Computer
Conference 361-368, (1975).

[MICOOa] Microsoft Corporation, "Microsoft Windows CE 3.0 Operating System
Configurations", http://msdn.microsoft.com/librarv/techart/configs30.htm,
(Apr 2000).

[MICOOb] Microsoft Corporation, "Microsoft Windows CE Platform Builder 3.0
Getting Started Guide", Part No. X05-69830, (May 2000).

[MUE00] Muench, Chris, The Windows CE Technology Tutorial, ISBN:
0201616424, Addison-Wesley, (2000).

[MUR98] Murray, John, Inside Microsoft Windows CE, ISBN: 1572318546,
Microsoft Press, (1998).

[PAR72] Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems into
Modules." Communications of the ACM, Vol. 15, No. 721053-1058, (Dec
1972).

[PRE97] Pressman, Roger S., Software Engineering - A Practitioner's Approach,
4th edition, The McGraw Hill Companies, Inc., ISBN: 0073655783,
(1997).

[RH098] Rhodes, Neil, McKeehan, Julie, Palm Programming: The Developer's
Guide,ISBN: 1565925254, (Dec 1998).

[S AL75] Saltzer, Jerome H., Schroeder, Michael D., "The Protection of Information
in Computer Systems." Proceedings of the IEEE, Vol. 63, No. 9 1278-
1308, (Sept 1975).

[SCH72] Schroeder, Michael D., Saltzer, Jerome H., "A Hardware Architecture for
Implementing Protection Rings." Communications of the ACM, Vol. 15,
No. 3 157-170, (Mar 1972).

94

[SCH77] Schroeder, Michael D., Clark, David D., Saltzer, Jerome H., "The Multics
Kernel Design Project." Proceedings of Sixth ACM Symposium on
Operating Systems Principles 43-56, (Nov 1977).

[SEB95] Sibert, Olin, Porras, Phillip A., Lindell, Robert, "The Intel 80x86
Processor Architecture: Pitfalls for Secure Systems." IEEE 211-222,
Oakland, CA, (1995).

[SMI99] Smith, Sean W., Weingart, Steve, "Building a high-performance,
programmable secure coprocessor." Computer Networks, The
International Journal of Computer and Telecommunications Networking,
31,831-860,(1999).

[SOL98] Solomon, David A. Inside Windows NT, Second Edition, Microsoft Press,
ISBN: 1572316772,(1998).

[WEI95] Weissman, Clark, "Security Penetration Testing Guideline.", Handbook
for the Computer Security Certification of Trusted Systems Ch. 10, (Jan
1995).

B. OTHER

Newsgroups

1. msnews.microsoft.com

2. microsoft.public.windowsce.embedded

3. microsoft.public.windowsce.platbuilder

4. microsoft.public.windowsce.platbuilder.beta

5. microsoft.public.windowsce.targeted.device

Microsoft Websites

1. Windows Embedded CE, www.microsoft.com/windows/embedded/ce/default.asp

2. Windows Embedded, www.microsoft.com/windows/embedded/default.asp

3. Microsoft Developers Network Embedded, http://msdn.microsoft.com/embedded

4. Microsoft Newsgroups
http://communities.microsoft.com/newsgroups/default.asp?icp=msdn&slcid=us

5. PocketPC, www.microsoft.com/mobile/pocketpc/default.asp

6. Microsoft Developer's Store
http://developerstore.com/devstore/pbsourcecode.asp

95

CEPC Websites

1. Special Computing, http://www.specialcomp.com

2. Real Time Online, http://www.realtimeonline.com/CEPC.htm

96

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Chairman, Code CS 1
Computer Science Department
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943-5118

4. Commander, Naval Security Group Command 1
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585
San Diego, CA 92110-3127

5. Mr. Paul Clark 2
Naval Postgraduate School
Code CS/Cp
833 Dyer Road
Monterey, CA 93943-5118

6. Ms. Deborah M. Cooper 1
Deborah M. Cooper Company
P.O. Box 17753
Arlington, VA 22216

7. Ms. Louise Davidson 1
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

8. Mr. William Dawson 1
Community CIO Office
Washington DC 20505

97

9. Mr. Richard Hale
Defense Information Systems Agency, Suite 400
5600 Columbia Pike
Falls Church, VA 22041-3230

10. Dr. Cynthia E. Irvine
Naval Postgraduate School
Code CS/Ic
833 Dyer Road
Monterey, CA 93943-5118

11. Capt. James Newman
N64
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

12. Mr. Carl Siel
Space and Naval Warfare Systems Command
PMW161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

13. Ms. Barbara A. Pereira
48015 Mayflower Dr
Lexington Park, MD 20653

98

